High level investigation of the catalytic effect of water on formic acid decomposition and isomerization.

Phys Chem Chem Phys

Center for Computational Quantum Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, USA.

Published: November 2020

Formic acid (FA) is a ubiquitous molecule found in the atmosphere, and is relevant to many important processes. The FA molecule generally exists as the trans isomer, which can decompose into H2O and CO (dehydration). It can also exist in the less favorable cis isomer which can decompose into H2 and CO2 (decarboxylation). Our work examines the complexes formed between each isomer of FA with water. We present geometries and vibrational frequencies obtained at the reliable CCSD(T)/aug-cc-pVTZ level of theory for seven FAwater complexes. We utilize the focal point method to determine CCSDT(Q)/CBS plus corrections binding energies of 7.37, 3.36, and 2.02 kcal mol-1 plus 6.07, 3.79, 2.60, and 2.55 kcal mol-1 for the trans-FAwater and cis-FAwater complexes, respectively. Natural bond orbital analysis is used to further decompose the interactions in each complex and gain insight into their relative strengths. Furthermore, we examine the effect that a single water molecule has on the barrier heights to each decomposition pathway by optimizing the transition states and verifying their connectivity with intrinsic reaction coordinate computations as well as utilizing a kinetic model. Water lowers the barrier to dehydration by at most 15.78 kcal mol-1 and the barrier to decarboxylation by up to 15.90 kcal mol-1. Our research also examines for the first time the effect of one water molecule on the interconversion barrier and we find that the barrier from trans to cis is not catalyzed by water due to the strong FA and water interactions. Our results highlight some instances where different binary complexes result in different decomposition pathways and even a case where one binary complex can form the same decomposition products via two distinct mechanisms. Our results provide a reliable benchmark of the FAH2O system as well as provide insight into future studies of similar atmospheric systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp03796fDOI Listing

Publication Analysis

Top Keywords

kcal mol-1
16
formic acid
8
isomer decompose
8
water molecule
8
water
7
barrier
5
high level
4
level investigation
4
investigation catalytic
4
catalytic water
4

Similar Publications

Chemical Bonding and Dynamic Structural Fluxionality of a Boron-Based BAl Cluster.

Molecules

December 2024

Department of Chemical and Materials Engineering, Lyuliang University, Lishi 033001, China.

We studied the boron-based composite cluster BAl doped with Al atoms. The global minimum structure of the BAl cluster is a three-layer structure, consisting of three parts: an Al unit, a B ring and an isolated Al atom. Charge calculations analysis shows that the cluster can be expressed as [Al][B][Al], has 6π/6σ double aromaticity and follows the (4+2) Hückel rule.

View Article and Find Full Text PDF

Sequence-Specific Free Energy Changes in DNA/RNA Induced by a Single LNA-T Modification in Antisense Oligonucleotides.

Int J Mol Sci

December 2024

Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-Minamimachi, Kobe 650-0047, Japan.

2',4'-methylene bridged nucleic acid/locked nucleic acid (2',4'-BNA/LNA; LNA) is a modified nucleic acid that improves the function of antisense oligonucleotide therapeutics. In particular, LNA in the DNA strand increases its binding affinity for the target RNA. Predicting the binding affinities of LNA-containing antisense oligonucleotides and RNA duplexes is useful for designing antisense oligonucleotides.

View Article and Find Full Text PDF
Article Synopsis
  • B. pilosa L. is an edible herb traditionally used for healing, and a recent study conducted a detailed analysis of its extract using advanced techniques like UPLC/T-TOF-MS/MS and GC-MS.
  • The study found that unsaturated fatty acids (11.38%) and sterols (39.92%) were more prevalent in the extract than saturated fatty acids (8.69%) and hydrocarbons (6.6%), with oleic and palmitic acids being the most significant.
  • The extract exhibited a concentration-dependent suppression of cell proliferation in cancer cell lines and showed potential as an inhibitor for certain enzymes, although safety toxicity assessments were missing, indicating a need for further research on its therapeutic effects.
View Article and Find Full Text PDF

Beyond Fang's fury: a computational study of the enzyme-membrane interaction and catalytic pathway of the snake venom phospholipase A toxin.

Chem Sci

January 2025

LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal

Snake venom-secreted phospholipases A (svPLAs) are critical, highly toxic enzymes present in almost all snake venoms. Upon snakebite envenomation, svPLAs hydrolyze cell membrane phospholipids and induce pathological effects such as paralysis, myonecrosis, inflammation, or pain. Despite its central importance in envenomation, the chemical mechanism of svPLAs is poorly understood, with detrimental consequences for the design of small-molecule snakebite antidotes, which is highly undesirable given the gravity of the epidemiological data that ranks snakebite as the deadliest neglected tropical disease.

View Article and Find Full Text PDF

A one-pot, acid-, base-, and metal-free, multicomponent strategy has been developed to synthesize spiro thiochromene-oxindole derivatives as potential anti-inflammatory agents. The synthesized compounds were screened for their anti-inflammatory activity by inhibiting heat-induced Bovine Serum Albumin (BSA) denaturation assay, revealing moderate to good efficacy. Compounds 4e, 4k, and 4h exhibited the highest activity, inhibiting BSA denaturation by 90.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!