AI Article Synopsis

  • This study uses density functional theory to analyze the properties of CoTa alloys with Si, Ge, and Sn, focusing on both cubic and tetragonal phases.
  • It finds that CoTaSi and CoTaGe remain stable in a tetragonal phase up to 400 K, while CoTaSn is only stable up to 115 K, suggesting different phase behaviors at room temperature.
  • The research concludes that full Heusler alloys show magnetic metallic characteristics, while their half Heusler counterparts exhibit non-magnetic semiconducting properties and better thermoelectric performance in the cubic phase.

Article Abstract

In this work, using density functional theory based electronic structure calculations, we carry out a comparative study of geometric, mechanical, electronic, magnetic, and thermoelectric properties of CoTaalloys, where= Si, Ge and Sn and= 1 and 2. In the present study, a systematic approach has been taken to perform calculations to probe the possibility of existence of a tetragonal (martensite) phase in these alloys and also to perform a comparative study of various physical properties of the six systems, mentioned above, in the cubic and possible tetragonal phases. From our calculations, a tetragonal phase has been found to be stable up to about 400 K in case of CoTaSi and CoTaGe alloys, and up to about 115 K for CoTaSn, indicating the presence of room temperature cubic phase in the latter alloy unlike the former two. Further, the results based on the energetics and electronic structure have been found to corroborate well with the elastic properties. All the above-mentioned full Heusler alloys (FHAs) show magnetic behavior with metallicity in both the phases. However, their half Heusler counterparts exhibit non-magnetic semi-conducting behavior in the cubic phase. We calculate and compare the thermoelectric properties, in detail, of all the materials in the cubic and possible tetragonal phases. In the cubic phase, the half Heusler alloys exhibit improved thermoelectric properties compared to the respective FHAs. Furthermore, it is observed that the FHAs exhibit higher (by about an order of magnitude) values of Seebeck coefficients in their cubic phases, compared to those in the tetragonal phases (which are of the order of only a few micro-volts/Kelvin). The observed behaviors of the transport properties of the probed materials have been analyzed using the topology of the Fermi surface.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/abbb40DOI Listing

Publication Analysis

Top Keywords

thermoelectric properties
16
tetragonal phases
12
cubic phase
12
density functional
8
functional theory
8
electronic structure
8
comparative study
8
cubic tetragonal
8
heusler alloys
8
half heusler
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!