Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The incidence of syphilis caused by Treponema pallidum subsp pallidum (T pallidum) infection is accompanied by inflammatory injuries of vascular endothelial cells. Studies have revealed that T pallidum infection could induce inflammasome activation and pyroptosis in macrophages. MicroRNA-223-3p (miR-223-3p) was reported to be a negative regulator in inflammatory diseases. The present study aimed to explore whether miR-223-3p regulates T pallidum-induced inflammasome activation and pyroptosis in vascular endothelial cells, and determine the mechanisms which underlie this process. MiR-223-3p levels in syphilis and control samples were determined. The biological function of miR-223-3p in the NLRP3 inflammasome and pyroptosis was evaluated in T pallidum-infected human umbilical vein endothelial cells (HUVECs). We observed a dramatic decrease in miR-223-3p levels in syphilis patients (n = 20) when compared to healthy controls (n = 20). Moreover, miR-223-3p showed a notable inhibitory effect on recombinant Tp17 (rTP17)-induced caspase-1 activation, resulting in decrease in IL-1β production and pyroptosis, which was accompanied by the release of lactate dehydrogenase (LDH) in HUVECs. Additionally, the dual-luciferase assay confirmed that NLRP3 is a direct target of miR-223-3p. Moreover, NLRP3 overexpression or knockdown largely blocked the effects of miR-223-3p on T pallidum-induced inflammasome activation and pyroptosis in HUVECs. Most importantly, a notable negative correlation was observed between miR-223-3p and NLRP3, caspase-1, and IL-1β, respectively, in the serum of syphilis patients and healthy controls. Taken together, our results reveal that miR-223-3p targets NLRP3 to suppress inflammasome activation and pyroptosis in T pallidum-infected endothelial cells, implying that miR-223-3p could be a potential target for syphilis patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7754033 | PMC |
http://dx.doi.org/10.1111/jcmm.16061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!