Dexamethasone and p38 MAPK inhibition of cytokine production from human lung fibroblasts.

Fundam Clin Pharmacol

Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK.

Published: August 2021

Lung fibroblasts are involved in airway inflammation and remodelling in COPD. We report an investigation of the effects of combining a p38 MAPK inhibitor with a corticosteroid on cytokine production by a human lung fibroblast cell line and primary fibroblasts obtained from human lung tissue. Our main interest was to determine whether additive or synergistic anti-inflammatory effects would be observed. We observed inhibition of IL-6 and CXCL8 secretion from both lung fibroblast models by dexamethasone (maximal inhibition 40-90%) and the p38 MAPK inhibitor BIRB (maximal inhibition 30-60%), used alone and evidence of increased anti-inflammatory effects when used in combination. This combination effect was more apparent for TNF-a stimulated cytokine production (maximal inhibition increased by 10-20%). Interaction ratio analysis showed this enhanced effect to be additive rather than synergistic interaction. Similar results were obtained using both fibroblast cell culture models. Combining a p38 MAPK to corticosteroids may help reduce fibroblast mediated inflammation in COPD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8451891PMC
http://dx.doi.org/10.1111/fcp.12627DOI Listing

Publication Analysis

Top Keywords

p38 mapk
16
cytokine production
12
human lung
12
maximal inhibition
12
production human
8
lung fibroblasts
8
combining p38
8
mapk inhibitor
8
lung fibroblast
8
fibroblast cell
8

Similar Publications

Maternal exposure to chronic, low-dose nonylphenol in zebrafish: Disruption of ovarian health, reproductive function, and embryogenesis.

J Environ Manage

January 2025

Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India. Electronic address:

Nonylphenol (NP), a non-ionic surfactant and potent endocrine disruptor, is known for its environmental persistence, biotic accumulation potential and toxicity. Nonetheless, mechanisms underlying NP modulation of female fertility with potential impact on embryogenesis in the unexposed offspring remain elusive. This study investigates the effects and toxic mechanisms of maternal exposure to NP at varying concentrations (50 and 100 μg/L) on zebrafish (Danio rerio), specifically focusing on ovarian health, reproductive parameters, and early developmental potential in the F1 generation.

View Article and Find Full Text PDF

Targeting p38 MAPK signaling pathway and neutrophil extracellular traps: An important anti-inflammatory mechanism of Huangqin Qingre Chubi Capsule in rheumatoid arthritis.

Int Immunopharmacol

January 2025

Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui 230031, China.

Rheumatoid arthritis (RA) is a common chronic autoimmune disease. Neutrophils release and their extracellular traps (NETs) tend to result in synovial inflammation and cartilage damage. Huangqin Qingre Chubi Capsule (HQC) is an important herbal formulation for RA treatment and has been used for many years.

View Article and Find Full Text PDF

Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.

View Article and Find Full Text PDF

In Situ Conversion of Atherosclerotic Plaques' Iron into Nanotheranostics.

J Am Chem Soc

January 2025

Materdicine Lab, School of Life Sciences, Shanghai University, 200444 Shanghai, P. R. China.

The presence of a substantial necrotic core in atherosclerotic plaques markedly heightens the risk of rupture, a consequence of elevated iron levels that exacerbate oxidative stress and lipid peroxidation, thereby sustaining a detrimental cycle of ferroptosis and inflammation. Concurrently targeting both ferroptosis and inflammation is crucial for the effective treatment of vulnerable plaques. In this study, we introduce gallium hexacyanoferrate nanoabsorption catalysts (GaHCF NACs) designed to disrupt this pathological cycle.

View Article and Find Full Text PDF

Inhibition of DEK restores hematopoietic stem cell function in Fanconi anemia.

J Exp Med

March 2025

Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.

Hematopoietic stem cells (HSCs) are susceptible to replication stress, which is a major contributor to HSC defects in Fanconi anemia (FA). Here, we report that HSCs relax the global chromatin by downregulating the expression of a chromatin architectural protein, DEK, in response to replication stress. DEK is abnormally accumulated in bone marrow (BM) CD34+ cells from patients with FA and in Fancd2-deficient HSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!