A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionuq52kjj31l9b46j6paeebsi35ubkantd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Graded Image Generation Using Stratified CycleGAN. | LitMetric

Graded Image Generation Using Stratified CycleGAN.

Med Image Comput Comput Assist Interv

National Eye Institute, National Institutes of Health, Bethesda, MD, USA.

Published: October 2020

In medical imaging, CycleGAN has been used for various image generation tasks, including image synthesis, image denoising, and data augmentation. However, when pushing the technical limits of medical imaging, there can be a substantial variation in image quality. Here, we demonstrate that images generated by CycleGAN can be improved through explicit grading of image quality, which we call stratified CycleGAN. In this image generation task, CycleGAN is used to upgrade the image quality and content of near-infrared fluorescent (NIRF) retinal images. After manual assignment of grading scores to a small subset of the data, semi-supervised learning is applied to propagate grades across the remainder of the data and set up the training data. These scores are embedded into the CycleGAN by adding the grading score as a conditional input to the generator and by integrating an image quality classifier into the discriminator. We validate the efficacy of the proposed stratified CycleGAN by considering pairs of NIRF images at the same retinal regions (imaged with and without correction of optical aberrations achieved using adaptive optics), with the goal being to restore image quality in aberrated images such that cellular-level detail can be obtained. Overall, stratified CycleGAN generated higher quality synthetic images than traditional CycleGAN. Evaluation of cell detection accuracy confirmed that synthetic images were faithful to ground truth images of the same cells. Across this challenging dataset, F1-score improved from 76.9 ± 5.7% when using traditional CycleGAN to 85.0±3.4% when using stratified CycleGAN. These findings demonstrate the potential of stratified Cycle-GAN to improve the synthesis of medical images that exhibit a graded variation in image quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605896PMC
http://dx.doi.org/10.1007/978-3-030-59713-9_73DOI Listing

Publication Analysis

Top Keywords

image quality
24
stratified cyclegan
20
image generation
12
cyclegan
11
image
10
medical imaging
8
cyclegan image
8
variation image
8
images
8
synthetic images
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!