Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Salinity is a major environmental stress that limits crop production worldwide. It is well-understood that environmental adaptations, physiological and biochemical traits adjust salinity tolerance in plants, but imparting the knowledge gained towards crop improvement remain arduous. Utilizing the potentially of beneficial microorganisms present in the rhizosphere is an alternative strategy to improve crop production under optimal or stress conditions. The current study aims at examining the ability of plant growth-promoting rhizobacteria (PGPR) in improving coriander growth under salt stress condition. Coriander seeds were inoculated via dual culture of and , and therefore subjected to four levels of salt stress (0, 40, 80 and 120 mM NaCl) with three replications in a research greenhouse. Seventy-five days after sowing, when leaves fully developed, leaf samples were collected and the traits were measured. The results indicated that the dual inoculation improved chlorophyll a and b content, in comparison to the un-inoculated plants. The dual inoculation increased grain yield, stem fresh and dry weights by 11.6, 11.3 and 17.2%, respectively; it also enhanced total plant fresh and dry weights by 6.1 and 10.2%, respectively, as compared to control. As a result, the dual inoculation significantly improved catalase (CAT), but decreased ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) enzymes activities, as compared to control plants. Salt stress significantly increased (CAT) activity in the leaves, whereas it resulted in significant reduction in (APX) and (GPX) activity, especially in inoculated plants. Furthermore, dual inoculation decreased Na and subsequently increased K concentration in coriander leaves comparing with untreated plants. Overall, these results indicate that the PGPRs has improved coriander growth under control as well as salt stress conditions. Thus, PGPR can could significantly contribute to solve the coriander plant production problems caused by high salinity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591739 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2020.e05321 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!