Background: The ischemia-reperfusion (I/R) injury of skin flap is a complex pathophysiological process involving many cells and factors. Although endoplasmic reticulum (ER) stress-induced cell apoptosis and inflammatory response are of immense importance in the skin flap ischemia, the treatment for I/R injury induced by ER stress is barely reported.

Methods: Healthy male Wister rats were randomly divided into three groups: sham-operated group, I/R model group and I/R + LXA4 group. I/R-induced injury in skin flaps with or without pre-treatment of Lipoxin A4 (LXA4, 100 µg/kg) was tested by using HE and TUNEL staining. Related factors associated with oxidative stress, apoptosis, inflammatory response, and ER stress were tested by ELISA, biochemical assay, and western blotting, respectively.

Results: Our results showed that LXA4 treatment significantly promotes skin flap survival and attenuates I/R injury by inhibiting oxidative stress, apoptosis, and inflammatory factor release, evidenced by the decreased expression of malondialdehyde (MDA), lactate dehydrogenase (LDH), NF-κBp65, tumor necrosis factor α (TNF-α), ET, active Caspase-3 and Bax and up-regulated superoxide dismutase (SOD), glutathione (GSH) level and Bcl-2 expression. Moreover, LXA4 treatment also reverses the increased expression of GRP78, p-PERK, p-eIF2α, ATF4, and CHOP induced by I/R injury.

Conclusions: In conclusion, we showed that ER stress causes cell apoptosis and inflammatory response, resulting in the skin flaps injury. LXA4 exhibits a protective effect on skin flaps against I/R injury through the inhibition of ER stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575949PMC
http://dx.doi.org/10.21037/atm-20-5549DOI Listing

Publication Analysis

Top Keywords

apoptosis inflammatory
20
skin flaps
16
inflammatory response
16
i/r injury
16
cell apoptosis
12
skin flap
12
injury inhibiting
8
endoplasmic reticulum
8
injury skin
8
group i/r
8

Similar Publications

Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia.

Sci Rep

January 2025

Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.

Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.

View Article and Find Full Text PDF

Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps.

Ann Chir Plast Esthet

January 2025

Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.

Background: Hydrogen sulfide (HS) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about HS effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area.

View Article and Find Full Text PDF

Manzamine A, a natural compound derived from various sponge genera, features a β-carboline structure and exhibits a range of biological activities, including anti-inflammatory and antimalarial effects. Its potential as an anticancer agent has been explored in several tumor models, both in vitro and in vivo, showing effects through mechanisms such as cytotoxicity, regulation of the cell cycle, inhibition of cell migration, epithelial-to-mesenchymal transition (EMT), autophagy, and apoptosis through multi-target interactions of E2F transcriptional factors, ribosomal S6 kinases, androgen receptor (AR), SIX1, GSK-3β, V-ATPase, and p53/p21/p27 cascades. This systematic review evaluates existing literature on the potential application of this marine alkaloid as a novel cancer therapy, highlighting its promising ability to inhibit cancer cell growth while causing minimal side effects.

View Article and Find Full Text PDF

Sivelestat sodium protects against renal ischemia/reperfusion injury by reduction of NETs formation.

Arch Biochem Biophys

January 2025

Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin 150001, China; Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:

Background: Ischemia-reperfusion injury (IRI) often results in renal impairment. While the presence of neutrophil extracellular traps (NETs) is consistently observed, their specific impact on IRI is not yet defined. Sivelestat sodium, an inhibitor of neutrophil elastase which is crucial for NET formation, may offer a therapeutic approach to renal IRI, warranting further research.

View Article and Find Full Text PDF

Background: Dichloroacetate (DCA) has shown potential in modulating cellular metabolism and inflammation, particularly in cardiac conditions. This study investigates DCA's protective effects in a mouse model of myocardial infarction (MI), focusing on its ability to enhance cardiac function, reduce inflammation, and shift macrophage polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype.

Methods: An acute MI model was created using left anterior descending coronary artery ligation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!