Backgrounds: Conventional ultrasound manual scanning and artificial diagnosis approaches in breast are considered to be operator-dependence, slight slow and error-prone. In this study, we used Automated Breast Ultrasound (ABUS) machine for the scanning, and deep convolutional neural network (CNN) technology, a kind of Deep Learning (DL) algorithm, for the detection and classification of breast nodules, aiming to achieve the automatic and accurate diagnosis of breast nodules.
Methods: Two hundred and ninety-three lesions from 194 patients with definite pathological diagnosis results (117 benign and 176 malignancy) were recruited as case group. Another 70 patients without breast diseases were enrolled as control group. All the breast scans were carried out by an ABUS machine and then randomly divided into training set, verification set and test set, with a proportion of 7:1:2. In the training set, we constructed a detection model by a three-dimensionally U-shaped convolutional neural network (3D U-Net) architecture for the purpose of segment the nodules from background breast images. Processes such as residual block, attention connections, and hard mining were used to optimize the model while strategies of random cropping, flipping and rotation for data augmentation. In the test phase, the current model was compared with those in previously reported studies. In the verification set, the detection effectiveness of detection model was evaluated. In the classification phase, multiple convolutional layers and fully-connected layers were applied to set up a classification model, aiming to identify whether the nodule was malignancy.
Results: Our detection model yielded a sensitivity of 91% and 1.92 false positive subjects per automatically scanned imaging. The classification model achieved a sensitivity of 87.0%, a specificity of 88.0% and an accuracy of 87.5%.
Conclusions: Deep CNN combined with ABUS maybe a promising tool for easy detection and accurate diagnosis of breast nodule.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578508 | PMC |
http://dx.doi.org/10.21037/jtd-19-3013 | DOI Listing |
Biomed Phys Eng Express
January 2025
Department of Ophthalmology, Hospital Universitario de Canarias, Carretera Ofra S/N, La Laguna, Santa Cruz de Tenerife, 38320, SPAIN.
This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biomedical and Health Informatics, Tsui Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America.
Semantical text understanding holds significant importance in natural language processing (NLP). Numerous datasets, such as Quora Question Pairs (QQP), have been devised for this purpose. In our previous study, we developed a Siamese Convolutional Neural Network (S-CNN) that achieved an F1 score of 82.
View Article and Find Full Text PDFOptom Vis Sci
January 2025
Johnson & Johnson MedTech (Vision), Irvine, California.
Significance: Optimal meibography utilization and interpretation are hindered due to poor lid presentation, blurry images, or image artifacts and the challenges of applying clinical grading scales. These results, using the largest image dataset analyzed to date, demonstrate development of algorithms that provide standardized, real-time inference that addresses all of these limitations.
Purpose: This study aimed to develop and validate an algorithmic pipeline to automate and standardize meibomian gland absence assessment and interpretation.
Insights Imaging
January 2025
Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
Introduction: A large number of middle-aged and elderly patients have an insufficient understanding of osteoporosis and its harm. This study aimed to establish and validate a convolutional neural network (CNN) model based on unenhanced chest computed tomography (CT) images of the vertebral body and skeletal muscle for opportunistic screening in patients with osteoporosis.
Materials And Methods: Our team retrospectively collected clinical information from participants who underwent unenhanced chest CT and dual-energy X-ray absorptiometry (DXA) examinations between January 1, 2022, and December 31, 2022, at four hospitals.
Cureus
December 2024
Department of Technology and Clinical Trials, Advanced Research, Deerfield Beach, USA.
This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!