Background: Prolonged exposure to high oxygen concentrations in premature infants, although lifesaving, can induce lung oxidative stress and increase the risk of developing BPD, a form of chronic lung disease. The lung alveolar epithelium is damaged by sustained hyperoxia, causing oxidative stress and alveolar simplification; however, it is unclear what duration of exposure to hyperoxia negatively impacts cellular function.

Methods: Here we investigated the role of a very short exposure to hyperoxia (95% O, 5% CO) on mitochondrial function in cultured mouse lung epithelial cells and neonatal mice.

Results: In epithelial cells, 4 h of hyperoxia reduced oxidative phosphorylation, respiratory complex I and IV activity, utilization of mitochondrial metabolites, and caused mitochondria to form elongated tubular networks. Cells allowed to recover in air for 24 h exhibited a persistent global reduction in fuel utilization. In addition, neonatal mice exposed to hyperoxia for only 12 h demonstrated alveolar simplification at postnatal day 14.

Conclusion: A short exposure to hyperoxia leads to changes in lung cell mitochondrial metabolism and dynamics and has a long-term impact on alveolarization. These findings may help inform our understanding and treatment of chronic lung disease.

Impact: Many studies use long exposures (up to 14 days) to hyperoxia to mimic neonatal chronic lung disease. We show that even a very short exposure to hyperoxia leads to long-term cellular injury in type II-like epithelial cells. This study demonstrates that a short (4 h) period of hyperoxia has long-term residual effects on cellular metabolism. We show that neonatal mice exposed to hyperoxia for a short time (12 h) demonstrate later alveolar simplification. This work suggests that any exposure to clinical hyperoxia leads to persistent lung dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8089115PMC
http://dx.doi.org/10.1038/s41390-020-01224-5DOI Listing

Publication Analysis

Top Keywords

exposure hyperoxia
20
short exposure
16
alveolar simplification
16
hyperoxia
12
chronic lung
12
epithelial cells
12
hyperoxia leads
12
lung
9
lung epithelial
8
cell mitochondrial
8

Similar Publications

Chronic hyperoxia during early postnatal development depresses breathing when neonatal rats are returned to room air and causes long-lasting attenuation of the hypoxic ventilatory response (HVR). In contrast, little is known about the control of breathing of juvenile or adult mammals after chronic exposure to moderate hyperoxia later in life. Therefore, Sprague-Dawley rats were exposed to 60 % O for 7 days (juveniles) or for 4 and 14 days (adults) and ventilation was measured by whole-body plethysmography immediately after the exposure or following a longer period of recovery in room air.

View Article and Find Full Text PDF

Backgroud: Recent studies have reported mitochondrial damage and metabolic dysregulation in BPD, but the changes in mitochondrial dynamics and glucose metabolic reprogramming in ATII cells and their regulatory relationship have not been reported.

Methods: Neonatal rats in this study were divided into model (FIO2:85%) and control (FIO2: 21%) groups. Lung tissues were extracted at 3, 7, 10 and 14 postnatal days and then conducted HE staining for histopathological observation.

View Article and Find Full Text PDF

Patients with hypoxemia require high-concentration oxygen therapy. However, prolonged exposure to oxygen concentrations 21% higher than physiological concentrations (hyperoxia) may cause oxidative cellular damage. Pulmonary alveolar epithelial cells are major targets for hyperoxia-induced oxidative stress.

View Article and Find Full Text PDF

Background: Bronchopulmonary dysplasia (BPD), a chronic lung disease prevalent among premature infants, significantly impacts lifelong respiratory health. Macrophages, as key components of the innate immune system, play a role in lung tissue inflammation and injury, exhibiting diverse and dynamic functionalities. The M4 macrophage, a distinctive subtype primarily triggered by chemokine (C-X-C motif) ligand 4 (CXCL4), has been implicated in pulmonary inflammatory and fibrotic processes.

View Article and Find Full Text PDF

Aircraft cabins are routinely pressurized to the equivalent of 8000 ft altitude. Exposure of lab animals to aeromedical evacuation relevant hypobaria after traumatic brain injury worsens neurological outcomes, which is paradoxically exacerbated by hyperoxia. This study tested the hypothesis that exposure of rats to hypobaria following cortical impact reduces cerebral blood flow, increases neuroinflammation, and alters brain neurochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!