The present study was intended to elucidate the genomic basis of antibiotic resistance and hyper-virulence of the fish pathogen Aeromonas veronii XhG1.2 characterized in our previous work. The identity of XhG1.2 was confirmed through 16S rDNA sequence analysis and whole genome sequence analysis. The top-hit species distribution analysis of XhG1.2 sequence data revealed major hits against the Aeromonas veronii. The identification of virulence genes using the VFDB showed the genome of XhG1.2 to have the genes coding for the virulence factors viz. aerolysin, RtxA, T2SS, T3SS and T6SS. The presence of antibiotic resistance predicted through the CARD database analysis showed it to have the CephA3, OXA-12, adeF and pulvomycin resistance genes. By the phylogenetic and comparative genomic analysis, A. veronii species were found to have genes for toxin production. This also confirmed the pathogenicity and drug resistance of A. veronii XhG1.2 and also its potential to cause disease in diverse ornamental fishes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2020.10.034DOI Listing

Publication Analysis

Top Keywords

aeromonas veronii
12
veronii xhg12
12
antibiotic resistance
8
sequence analysis
8
xhg12
6
veronii
5
analysis
5
genome sequencing
4
sequencing annotation
4
annotation multi-virulent
4

Similar Publications

Background: Probiotics and essential oils feed supplements are widely used in the aquaculture sector. This study was conducted to evaluate the effects of dietary supplementation with probiotics, essential oils and their combination on growth performance, serum biochemical parameters, antioxidant capacity, resistance against Aeromonas veronii, and intestinal histomorphology of Nile tilapia (Oreochromis niloticus). A total of 360 O.

View Article and Find Full Text PDF

Bacteria of the genus are widely distributed in water bodies around the world. Some species have been identified as human pathogens causing intestinal and a variety of extraintestinal infections. In Germany, information on diseases caused by is rare, because infections are not notifiable in Germany.

View Article and Find Full Text PDF

Functional characterization of the global regulator Hfq in Aeromonas veronii reveals an essential role in pathogenesis and secretion of effectors.

Microb Pathog

December 2024

Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China. Electronic address:

Article Synopsis
  • Hfq, an RNA chaperone, is crucial for the virulence and pathogenicity of the infectious bacterium Aeromonas veronii.
  • Deleting the hfq gene leads to decreased swimming motility, reduced biofilm formation, and lower adhesion to epithelial cells, significantly impairing its ability to colonize in host tissues.
  • The study indicates that while hfq deletion reduces some virulence traits, it paradoxically increases secreted proteins and cytotoxicity, suggesting Hfq regulates the expression of virulence factors, balancing pathogenicity and fitness in A. veronii.
View Article and Find Full Text PDF

ArgR regulates motility and virulence through positive control of flagellar genes and inhibition of diguanylate cyclase expression in Aeromonas veronii.

Commun Biol

December 2024

Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.

Flagella are essential for biofilm formation, adhesion, virulence, and motility. In this study, the deletion of argR resulted in defects in flagellar synthesis and reduced motility, nevertheless, the underlying mechanism by which ArgR regulated bacterial motility remained unclear. ChIP-Seq and RNA-Seq analysis revealed that ArgR regulated the expression of flagellar genes, concluding two-component system flrBC and multitudinous flagellar structure genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!