A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Baseline-dependency: How genotype and signaled delays influence amphetamine's effects on delay discounting. | LitMetric

Baseline-dependency: How genotype and signaled delays influence amphetamine's effects on delay discounting.

Pharmacol Biochem Behav

Department of Psychology, 226 Thach Hall, Auburn University, AL 36849, United States of America. Electronic address:

Published: December 2020

Rationale: Delay discounting, in which an animal chooses between a small, immediate or large, delayed reinforcer, is an experimental model of impulsivity. In previous studies, d-amphetamine has both increased and decreased preference for larger-delayed reinforcers depending on experimental conditions.

Objective: Identify genotype X environment interactions responsible for these disparate findings in a single study and assess the hypothesis that baseline-dependence unifies d-amphetamine's effects.

Methods: Delay discounting by BALB/c and C57Bl/6 mice was evaluated using a choice procedure in which six delays to a larger reinforcer were presented in a single session. Components were presented both with and without stimuli that uniquely signaled reinforcer delays. d-Amphetamine's (0.1-1.7 mg/kg) effects on delay and magnitude sensitivity were assessed when specific stimuli did or did not uniquely signal the delay to a larger reinforcer. d-Amphetamine's effects were determined using a model-comparison approach.

Results: During baseline, magnitude and delay sensitivity were identical across signal conditions for BALB/c mice and generally greater than the C57Bl/6 mice. For C57Bl/6 mice, magnitude and delay sensitivity were higher during the signaled than the unsignaled component. Amphetamine decreased delay sensitivity during both components for BALB/c mice, but this effect was attenuated by delay-specific stimuli. For C57Bl/6 mice, amphetamine decreased their high magnitude and delay sensitivity when delays were signaled and, conversely, increased the low magnitude and delay sensitivity when delays were unsignaled.

Conclusions: BALB/c mice showed high delay and magnitude sensitivity regardless of signal conditions. C57Bl/6's magnitude and delay sensitivity depended on signaling. d-Amphetamine usually decreased high baseline delay- and magnitude sensitivity and increased low sensitivities, a baseline-dependence that occurred regardless of whether delay sensitivity was driven by biological (genotype) or environmental (signaling) variables. The C57Bl/6 mouse may be a good model of environmentally-induced impulsivity while BALB/c mice could model impulsivity with a strong genetic contribution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbb.2020.173070DOI Listing

Publication Analysis

Top Keywords

delay sensitivity
28
magnitude delay
20
c57bl/6 mice
16
balb/c mice
16
delay
13
delay discounting
12
magnitude sensitivity
12
sensitivity
10
effects delay
8
model impulsivity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!