Effective anaerobic treatment of produced water from petroleum production using an anaerobic digestion inoculum from a brewery wastewater treatment facility.

J Hazard Mater

Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA; School of Civil and Environmental Engineering, Georgia Institute of Technology, GA 30332, USA. Electronic address:

Published: April 2021

Produced water is a major waste problem in oil production yet it also represents a potential water source if treated properly, especially in arid regions. In this study, we investigate the anaerobic treatability of an oil-produced water with extremely high chemical oxygen demand (COD) and total dissolved organic carbon (TOC) from Wyoming's Greater Green River Basin using anaerobic microcosms inoculated with a microbial consortium derived from a brewery wastewater treatment facility. The results demonstrate that for this water and an appropriate microbial inoculation, high-COD/TOC can be effectively removed with concomitant energy recovery as a form of methane. 93% and 89% of the COD and TOC were removed with a final high methane yield of 33.9 mmol/g carbon (848 μmol/g carbon/day). Chemical analyses showed that the ethylacetate-extractable compounds were much more amenable to biodegradation than the CHCl extractable compounds. Furthermore, compounds that were added during drilling and completion remained in the water and contributed significantly to the COD and anaerobic degradability. This study demonstrates that produced waters are amenable to anaerobic biological treatment and also that thorough chemical analyses are necessary to fully understand the potential for treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124348DOI Listing

Publication Analysis

Top Keywords

produced water
8
brewery wastewater
8
wastewater treatment
8
treatment facility
8
chemical analyses
8
water
6
treatment
5
anaerobic
5
effective anaerobic
4
anaerobic treatment
4

Similar Publications

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Biological studies reveal the role of trpA gene in biofilm formation, motility, hemolysis and virulence in Vibrio anguillarum.

Microb Pathog

January 2025

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:

Vibrio anguillarum is a pathogen responsible for vibriosis in aquaculture animals. The formation of bacterial biofilm contributes to infections and increases resistance to antibiotics. Tryptophanase and its substrate tryptophan have been recognized as signal molecules regulating bacterial biofilm formation.

View Article and Find Full Text PDF

The present study evaluates for the first time the seasonal performance of an innovative green groundwater treatment. The pilot plant combines microalgae-bacteria treatment and a cork-wood biofilter to reduce nitrates, pesticides, antibiotics (ABs), and antibiotic resistance genes (ARGs) from groundwater. Groundwater had nitrate concentrations ranging from 220 to 410 mg/L, while ABs (sulfonamides and fluoroquinolones) and pesticides (triazines) were detected at concentrations ranging from a few ng/L to 150 ng/L.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is known to be the main component of the mineral part of bones. Due to its properties HA is studied for various applications such as bone graft, drug carrier, heterogeneous catalyst or sorbent for waste water treatment. HA can be synthesized or valorized from bone wastes, as the food industry produce billions of kilograms of animal bones.

View Article and Find Full Text PDF

Abundance of non-toxic and low-level toxic Pseudo-nitzschia explains the low levels of neurotoxin domoic acid in Chinese coastal waters.

J Hazard Mater

January 2025

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China. Electronic address:

Domoic acid (DA), a well-known marine neurotoxin, is produced by toxic Pseudo-nitzschia species. However, the knowledge of DA in Chinese coastal waters remains limited, and the primary biological sources in these waters are still unknown. In this study, 200 surface phytoplankton samples were collected during summer and spring, covering the entire Chinese coastline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!