Background: Activation of mitogen-activated protein kinases (MAPKs) is regulated by a phosphorylation cascade comprising three kinases, MAPK kinase kinase (MAP3K), MAPK kinase (MAP2K), and MAPK. MAP2K1 and MAPK2K2, also known as MEK1 and MEK2, activate ERK1 and ERK2. The structure of the MAPK signaling cascade has been studied, but high-resolution structural studies of MAP2Ks have often focused on kinase domains or docking sites, but not on full-length proteins.
Objective: To understand the conformational dynamics of MEK1.
Methods: Full-length MEK1 was purified from Escherichia coli (BL21), and its conformational dynamics were analyzed using hydrogen/deuterium exchange mass spectrometry (HDX-MS). The effects of ATP binding were examined by co-incubating MEK1 and adenylyl-imidodiphosphate (AMP- PNP), a non-hydrolysable ATP analog.
Results: MEK1 exhibited mixed EX1/EX2 HDX kinetics within the N-terminal tail through β1, αI, and the C-terminal helix. AMP-PNP binding was found to reduce conformational dynamics within the glycine-rich loop and regions near the DFG motif, along with the activation lip.
Conclusion: We report for the first time that MEK1 has regions that slowly change its folded and unfolded states (mixed EX1/EX2 kinetics) and also report the conformational effects of ATP-binding to MEK1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929866527666201103152534 | DOI Listing |
Arch Microbiol
January 2025
Department of Botany, CMS College Kottayam, Kottayam, Kerala, 686001, India.
Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.
View Article and Find Full Text PDFMol Divers
January 2025
School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China. Electronic address:
Expanding toolkits of EPA/DHA enrichment from natural sources is essential for better satisfying increasing demands for them. Lipase K80, from Proteus vulgaris K80, showed an application potential in EPA/DHA enrichment, whereas no desired heterologous expression in generally regarded as safe (GRAS) hosts restricted its relevant applications. In this study, expression of lipase K80 in a well-reputed GRAS host, Pichia pastoris, was achieved and further enhanced via combining disruption of its C-terminal KKL motif with co-expression of N-Acetyltransferase Mpr1, with a cumulative increment of nearly 200 % in the secretion level and the volumetric activity.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India. Electronic address:
Monocarboxylate transporter 4 (MCT-4) is involved in various metabolic processes which are crucial in maintaining cellular pH and energy metabolism, and thus influence the tumor microenvironment. The study is aimed to rationally design effective Small interfering RNA (siRNA) that can silence MCT-4. We utilized a comprehensive workflow integrating multiple tools such as siDirect version 2.
View Article and Find Full Text PDFBiomacromolecules
January 2025
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, PR China.
Biomolecular motors are dynamic systems found in organisms with high energy conversion efficiency. FF-ATPase is a rotary biomolecular motor known for its near 100% energy conversion efficiency. It utilizes the synthesis and hydrolysis of ATP to induce conformational changes in motor proteins, thereby converting chemical energy into mechanical motion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!