Spin relaxation, a defining mechanism of nuclear magnetic resonance (NMR), has been a prime method for determining three-dimensional molecular structures and their dynamics in solution. It also plays key roles for contrast enhancement in magnetic resonance imaging (MRI). In bulk solutions, rapid Brownian molecular diffusion modulates dipolar interactions between a spin pair from different molecules, resulting in very weak intermolecular relaxations. We show that in fluids confined in nanospace or nanopores (nanoconfined fluids) the correlation of dipolar coupling between spin pairs of different molecules is greatly enhanced by the nanopore constraint boundaries on the molecular diffusion, giving rise to an enhanced correlation for the spin pair. As a result, the intermolecular dipolar interaction behaves cooperatively, which leads to a large intermolecular dipolar relaxation rate and opposite in sign to the bulk solution. We found that the classical NMR relaxation theory fails to capture these observations in a nanoconfined fluid environment. Hence, we developed a formal theory and experimentally confirmed that enhanced correlation and cooperated relaxation are ubiquitous in nanoconfined fluids. The newly discovered phenomenon and the developed NMR method reveal new applications in a broad range of synthesized and naturally occurring materials in the field of nanofluidics to study molecular dynamics and structure as well as for MRI image enhancement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.0c06258 | DOI Listing |
J Chem Phys
December 2024
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
In the theory of condensed-phase spectroscopy, local field effect is of general importance to account for intermolecular electrostatic interactions. The present paper extends the microscopic treatment of local field effects on the sum frequency generation (SFG) spectroscopy to incorporate quadrupole interactions, since their roles have been increasingly recognized in the SFG spectroscopy. The extended theory involves some corrections to the conventional formulas of the nonlinear susceptibilities in both the interface and bulk regions, including the χIQB term.
View Article and Find Full Text PDFJ Chem Phys
November 2024
Univ. Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ., GPM UMR 6634, F-76000 Rouen, France.
Nature
November 2024
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Quantum computation and simulation rely on long-lived qubits with controllable interactions. Trapped polar molecules have been proposed as a promising quantum computing platform, offering scalability and single-particle addressability while still leveraging inherent complexity and strong couplings of molecules. Recent progress in the single quantum state preparation and coherence of the hyperfine-rotational states of individually trapped molecules allows them to serve as promising qubits, with intermolecular dipolar interactions creating entanglement.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
Department of Physics, University of Nevada, Reno, Nevada 89557, USA.
By leveraging the hyperfine interaction between the rotational and nuclear spin degrees of freedom, we demonstrate extensive magnetic control over the electric dipole moments, electric dipolar interactions, and ac Stark shifts of ground-state alkali-dimer molecules such as KRb(X^{1}Σ^{+}). The control is enabled by narrow avoided crossings and the highly ergodic character of molecular eigenstates at low magnetic fields, offering a general and robust way of continuously tuning the intermolecular electric dipolar interaction for applications in quantum simulation, quantum sensing, and dipolar spinor physics.
View Article and Find Full Text PDFJ Phys Chem B
October 2024
Centre of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!