SATMF Suppresses the Premature Senescence Phenotype of the ATM Loss-of-Function Mutant and Improves Its Fertility in .

Int J Mol Sci

Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.

Published: October 2020

Leaf senescence is the final stage of leaf development. It is accompanied by the remobilization of nutrients from senescent leaves to developing organs. The occurrence of senescence is the consequence of integrating intrinsic and environmental signals. DNA damage triggered by stresses has been regarded as one of the reasons for senescence. To prevent DNA damage, cells have evolved elaborate DNA repair machinery. The ataxia telangiectasia mutated (ATM) functions as the chief transducer of the double-strand breaks (DSBs) signal. Our previous study suggests that ATM functions in lifespan regulation in . However, ATM regulatory mechanism on plant longevity remains unclear. Here, we performed chemical mutagenesis to identify the components involved in ATM-mediated longevity and obtained three dominant mutants , , displaying delayed senescence and restored fertility in comparison with mutant. Molecular cloning and functional analysis of SATMF (suppressor of atm in fertility) will help to understand the underlying regulatory mechanism of ATM in plants, and shed light on developing new treatments for the disease Ataxia-telangiectasia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662627PMC
http://dx.doi.org/10.3390/ijms21218120DOI Listing

Publication Analysis

Top Keywords

dna damage
8
atm functions
8
regulatory mechanism
8
atm
6
senescence
5
satmf suppresses
4
suppresses premature
4
premature senescence
4
senescence phenotype
4
phenotype atm
4

Similar Publications

Neomorphic leukemia-derived mutations in the TET2 enzyme induce genome instability via a substrate shift from 5-methylcytosine to thymine.

Proc Natl Acad Sci U S A

February 2025

Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai 201399, China.

Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine.

View Article and Find Full Text PDF

Anti-Müllerian hormone (AMH) protects the ovarian reserve from chemotherapy, and this effect is most pronounced with Doxorubicin (DOX). However, DOX toxicity and AMH rescue mechanisms in the ovary have remained unclear. Herein, we characterize the consequences of these treatments in ovarian cell types using scRNAseq.

View Article and Find Full Text PDF

Background: The incidence of skin cancer among Danes is one of the highest in the world. Most skin cancers are, however, avoidable with sun protection and reduction of exposure. One way to increase awareness could be through personal biofeedback information about skin DNA damage.

View Article and Find Full Text PDF

Mechanistic Monte Carlo simulations have proven invaluable in tackling complex challenges in radiobiology, for example for protecting astronauts from solar particle events (SPEs) during deep space missions which remains an underexplored area. In this study, the Geant4-DNA Monte Carlo code was used to assess the DNA damage caused by SPEs and evaluate the protective effectiveness of a multilayer shelter. By examining the February 1956 and October 1989 SPEs-two extreme cases-the results showed that the proposed shelter reduced DNA damage by up to 57.

View Article and Find Full Text PDF

Di-2-(ethylhexyl)phthalate (DEHP) is a phthalate derivative used extensively in a wide range of materials, such as medical devices, toys, cosmetics, and personal care products. Many mechanisms, including epigenetics, may be involved in the effects of phthalates on brain development. In this study, Sprague-Dawley male rats were obtained 21-23 days after their birth (post-weaning) and were exposed to DEHP during the prepubertal period with low-dose DEHP (DEHP-L, 30 mg/kg/day) and high-dose DEHP (DEHP-H, 60 mg/kg/day, 37 days) until the end of adolescence (PND 60).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!