In this work, we introduced fabrication and interrogation of simple and highly sensitive fiber-optic refractive index (RI) sensors based on ball resonators built on the tip of single-mode fibers. The probes have been fabricated through a CO fiber splicer, with a fast (~600 s) and repeatable method. The ball resonator acted as a weak interferometer with a return loss below -50 dB and was interrogated with an optical backscatter reflectometer measuring the reflection spectrum. The ball resonators behaved as weak interferometers with a shallow fringe and a spectrum that appeared close to a random signal, and RI sensitivity could be measured either through wavelength shift or amplitude change. In this work, we reported four samples having sensitivity ranges 48.9-403.3 nm/RIU and 256.0-566.2 dB/RIU (RIU = refractive index unit). Ball resonators appeared as a sensitive and robust platform for RI sensing in liquid and can be further functionalized for biosensing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662276 | PMC |
http://dx.doi.org/10.3390/s20216199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!