The purpose of this study was to investigate the tissue regenerating and biomechanical properties of processed eggshell membrane powder (PEP) for use in 3D-scaffolds. PEP is a low-cost, natural biomaterial with beneficial bioactive properties. Most importantly, this material is available as a by-product of the chicken egg processing (breaking) industry on a large scale, and it could have potential as a low-cost ingredient for therapeutic scaffolds. Scaffolds consisting of collagen alone and collagen combined with PEP were produced and analyzed for their mechanical properties and the growth of primary fibroblasts and skeletal muscle cells. Mechanical testing revealed that a PEP/collagen-based scaffold increased the mechanical hardness of the scaffold compared with a pure collagen scaffold. Scanning electron microscopy (SEM) demonstrated an interconnected porous structure for both scaffolds, and that the PEP was evenly distributed in dense clusters within the scaffold. Fibroblast and skeletal muscle cells attached, were viable and able to proliferate for 1 and 2 weeks in both scaffolds. The cell types retained their phenotypic properties expressing phenotype markers of fibroblasts (TE7, alpha-smooth muscle actin) and skeletal muscle (CD56) visualized by immunostaining. mRNA expression of the skeletal muscle markers myoD, myogenin, and fibroblasts marker (SMA) together with extracellular matrix components supported viable phenotypes and matrix-producing cells in both types of scaffolds. In conclusion, PEP is a promising low-cost, natural biomaterial for use in combination with collagen as a scaffold for 3D-tissue engineering to improve the mechanical properties and promote cellular adhesion and growth of regenerating cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663119 | PMC |
http://dx.doi.org/10.3390/ijms21218130 | DOI Listing |
Front Bioinform
January 2025
Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan, China.
The precise role of lncRNAs in skeletal muscle development and atrophy remain elusive. We conducted a bioinformatic analysis of 26 GEO datasets from mouse studies, encompassing embryonic development, postnatal growth, regeneration, cell proliferation, and differentiation, using R and relevant packages (limma et al.).
View Article and Find Full Text PDFJ Int Soc Sports Nutr
December 2025
University of Cadiz, ExPhy Research Group, Department of Physical Education, Puerto Real, Spain.
Background: Impaired fat oxidation is linked to cardiometabolic risk. Maximal fat oxidation rate (MFO) reflects metabolic flexibility and is influenced by lean mass, muscle strength, muscle quality - defined as the ratio of strength to mass - and cardiorespiratory fitness. The relationship between these factors and fat oxidation is not fully understood.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
Myocardial infarction is a condition where the heart muscle is damaged due to clogged coronary arteries. There are limited treatment options for treating myocardial infarction. Microneedle patches have recently become popular as a possibly viable therapy for myocardial.
View Article and Find Full Text PDFInt Ophthalmol
January 2025
Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
Purpose: To evaluate the efficacy and complications of simplified graded inferior oblique anterior transposition (IOAT) in treating at least 10 PD vertical deviation in the primary position and inferior oblique muscle overaction (IOOA).
Methods: This retrospective study reviewed the medical records of 65 patients treated with simplified graded IOAT procedures for both vertical deviation and IOOA. Patients were grouped according to vertical deviation in the primary position.
Sci Rep
January 2025
Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!