Background: Omics technologies, enabling the measurements of genes (genomics), mRNA (transcriptomics), proteins (proteomics) and metabolites (metabolomics), are valuable tools for personalized decision-making. We aimed to identify the existing value assessment frameworks used by health technology assessment (HTA) doers for the evaluation of omics technologies through a systematic review.

Methods: PubMed, Scopus, Embase and Web of Science databases were searched to retrieve potential eligible articles published until 31 May 2020 in English. Additionally, through a desk research in HTA agencies' repositories, we retrieved the published reports on the practical use of these frameworks.

Results: Twenty-three articles were included in the systematic review. Twenty-two frameworks, which addressed genetic and/or genomic technologies, were described. Most of them derived from the ACCE framework and evaluated the domains of analytical validity, clinical validity and clinical utility. We retrieved forty-five reports, which mainly addressed the commercial transcriptomic prognostics and next generation sequencing, and evaluated clinical effectiveness, economic aspects, and description and technical characteristics.

Conclusions: A value assessment framework for the HTA evaluation of omics technologies is not standardized and accepted, yet. Our work reports that the most evaluated domains are analytical validity, clinical validity and clinical utility and economic aspects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663163PMC
http://dx.doi.org/10.3390/ijerph17218001DOI Listing

Publication Analysis

Top Keywords

omics technologies
16
validity clinical
16
systematic review
8
assessment frameworks
8
frameworks health
8
health technology
8
technology assessment
8
evaluation omics
8
evaluated domains
8
domains analytical
8

Similar Publications

Urinary biomarkers of preeclampsia: An update.

Adv Clin Chem

January 2025

Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Electronic address:

Preeclampsia (PE), a pregnancy-related syndrome, has motivated extensive research to understand its pathophysiology and develop early diagnostic methods. 'Omic' technologies, focusing on genes, mRNA, proteins, and metabolites, have revolutionized biological system studies. Urine emerges as an ideal non-invasive specimen for omics analysis, offering accessibility, easy collection, and stability, making it valuable for identifying biomarkers.

View Article and Find Full Text PDF

Biodegradation of acetaminophen: Current knowledge and future directions with mechanistic insights from omics.

Chemosphere

January 2025

Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India. Electronic address:

Acetaminophen (APAP), one of the most frequently used antipyretic and analgesic medications, has recently grown into a persistent organic contaminant of emerging concern due to its over-the-counter and widespread use. The excessive accumulation of APAP and its derivatives in various environmental matrices is threatening human health and the ecosystem. The complexity of APAP and its intermediates augments the need for adequate innovative and sustainable strategies for the remediation of contaminated environments.

View Article and Find Full Text PDF

Micro-and-nano plastics (MNPs) are pervasive in terrestrial ecosystems and represent an increasing threat to plant health; however, the mechanisms underlying their phytotoxicity remain inadequately understood. MNPs can infiltrate plants through roots or leaves, causing a range of toxic effects, including inhibiting water and nutrient uptake, reducing seed germination rates, and impeding photosynthesis, resulting in oxidative damage within the plant system. The effects of MNPs are complex and influenced by various factors including size, shape, functional groups, and concentration.

View Article and Find Full Text PDF

Recent advancements in genomics, propelled by artificial intelligence, have unlocked unprecedented capabilities in interpreting genomic sequences, mitigating the need for exhaustive experimental analysis of complex, intertwined molecular processes inherent in DNA function. A significant challenge, however, resides in accurately decoding genomic sequences, which inherently involves comprehending rich contextual information dispersed across thousands of nucleotides. To address this need, we introduce GENA language model (GENA-LM), a suite of transformer-based foundational DNA language models capable of handling input lengths up to 36 000 base pairs.

View Article and Find Full Text PDF

Recent advances in molecular science have significantly enlightened our mechanistic understanding of spinocerebellar ataxia type 7. To further close remaining gaps, we performed a multi-omics analysis using SCA7 mice. Entire brain tissue samples were collected from 12-week-old mice, and RNA sequencing, methylation analysis, and proteomic analysis were performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!