The hydrogen blistering phenomenon is one of the key issues for the target station of the accelerator-based neutron source. In the present study, the effect of monovacancies and divacancies defects on the solution, clustering and diffusion behaviors of H impurity in fcc-Pd were studied through first principles calculations. Our calculations prove that vacancies behave as an effective sink for H impurities. We found that, although the H-trap efficiency of the larger vacancy defect was reduced, its H-trap ability strengthened. There is a short-ranged area around the vacancy defects in which H impurities tend to diffuse to vacancy defects, gather and form hydrogen bubbles. Therefore, the characteristic of large vacancy defects formation in materials should be considered when screening anti-blistering materials for neutron-producing targets or when designing radiation resistant composite materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663487PMC
http://dx.doi.org/10.3390/ma13214876DOI Listing

Publication Analysis

Top Keywords

vacancy defects
12
diffusion behaviors
8
effects monovacancy
4
monovacancy divacancies
4
divacancies hydrogen
4
hydrogen solubility
4
solubility trapping
4
trapping diffusion
4
behaviors fcc-pd
4
fcc-pd principles
4

Similar Publications

The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.

View Article and Find Full Text PDF

Microbe-mediated synthesis of defect-rich CeO nanoparticles with oxidase-like activity for colorimetric detection of L-penicillamine and glutathione.

Nanoscale

January 2025

College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.

To enhance production efficiency, curtail costs, and minimize environmental impact, developing simple and sustainable nanozyme synthesis methods has been the focus of relevant research. In this report, graphite-coated CeO nanoparticles (CeO NPs) with multiple defects (Ce defects, oxygen vacancies and carbon defects) were synthesized the culture filtrate of the extremely radioresistant bacterium R12 ( R12). The as-prepared CeO NPs exhibit remarkable oxidase (OXD)-like activity, efficiently catalyzing the oxidation of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to form oxTMB, even in the absence of HO.

View Article and Find Full Text PDF

Cobalt-based oxides have attracted significant attention as p-type thermoelectric materials due to their wide operational temperature range. However, their low average figure of merit () value has hindered service performance. A series of cation vacancies as Ca-active sites were introduced into CaCoO (0 ≤ ≤ 0.

View Article and Find Full Text PDF

Charge Transfer Effect in Layered Cathodes Through MEMS-Based In Situ TEM Studies.

Small

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing WUT Nano Key Lab, Wuhan, Hubei, 430070, China.

The irreversible lattice oxygen release is the primary issue in layered oxide cathodes which is generally attributed to a consecutive phase transition with less lattice oxygen content. Herein, an anomalous metal segregation pathway is observed in oxygen vacancy defective layered cathodes, which happens far before the onset of phase transitions. The correlation of electron energy loss spectroscopy indicates that an early charge transfer from oxygen 2p to Mn 3d orbital is responsible.

View Article and Find Full Text PDF

Visual Location of Oxygen Vacancies on Bismuth Titanate Nanosheets with Periodic Quantum Well and Promoting HO Photosynthesis.

Small

January 2025

Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, P. R. China.

Oxygen vacancy (OV) defect engineering plays a crucial role in enhancing photocatalytic efficiency. However, the direct visual characterization of oxygen vacancies still remains technically limited. Herein, a bismuth titanate (BiTiO, BTO-OV) model photocatalyst containing oxygen vacancies is constructed through density functional theory (DFT) calculations to reveal the influence mechanism of distinctive periodic quantum well and oxygen vacancies on the charge transfer behavior in BTO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!