Introducing new inexpensive materials for supercapacitors application with high energy density and stability, is the current research challenge. In this work, Silver doped carbon xerogels have been synthesized via a simple sol-gel method. The silver doped carbon xerogels are further surface functionalized with different loadings of nickel cobaltite (1 wt.%, 5 wt.%, and 10 wt.%) using a facile impregnation process. The morphology and textural properties of the obtained composites are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen physisorption analysis. The silver doped carbon xerogels display a higher surface area and larger mesopore volume compared to the un-doped carbon xerogels and hierarchically porous structure is obtained for all materials. The hybrid composites have been utilized as electrode materials for symmetric supercapacitors in 6 M KOH electrolyte. Among all the hybrid composites, silver doped carbon xerogel functionalized with 1 wt.% nickel cobaltite (NiCo1/Ag-CX) shows the best supercapacitor performance: high specific capacitance (368 F g at 0.1 A g), low equivalent series resistance (1.9 Ω), high rate capability (99% capacitance retention after 2000 cycles at 1 A g), and high energy and power densities (50 Wh/Kg, 200 W/Kg at 0.1 A g). It is found that the specific capacitance does not only depend on surface area, but also on others factors such as particle size, uniform particle distribution, micro-mesoporous structure, which contribute to abundant active sites and fast charge, and ion transfer rates between the electrolyte and the active sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663538PMC
http://dx.doi.org/10.3390/ma13214906DOI Listing

Publication Analysis

Top Keywords

silver doped
20
doped carbon
20
carbon xerogels
20
nickel cobaltite
12
electrode materials
8
high energy
8
wt% wt%
8
electron microscopy
8
surface area
8
hybrid composites
8

Similar Publications

Fe-based nanostructured particles affect the biocontrol activity of Trichoderma species by inducing their effector-like and mycoparasitism-associated genes.

Chemosphere

December 2024

Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chih., C.P. 31136, México. Electronic address:

The use of biocontrol microorganisms is one of the primary techniques used in agriculture to combat the damage caused by phytopathogens. Of these, Trichoderma sp. stand out as fungi species that are naturally present in agricultural soil and can come into contact with various compounds, such as nanostructured particles (NPs), which are starting to be used as pesticides and fertilizers.

View Article and Find Full Text PDF

An electrochemiluminescence biosensor based on silver-cysteine nanorod as an emitter and AgNP-decorated FeMoO as a signal amplifier for sensitive detection of heart-type fatty acid binding protein.

Mikrochim Acta

December 2024

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

An electrochemiluminescence (ECL) immunosensor was developed for the highly sensitive and specific detection of heart-type fatty acid binding protein (H-FABP) and the rapid diagnosis of acute myocardial infarction (AMI). H-FABP is a biomarker that is highly specific to cardiac tissue and is associated with a range of cardiac diseases. Following myocardial injury, the rate of increase in H-FABP levels is greater than that observed for myoglobin and troponin.

View Article and Find Full Text PDF

Silver nanoparticles are recognized for potent antimicrobial properties against pathogenic bacteria, crucial in addressing the severity of leptospirosis, where an ideal treatment is lacking. This study focuses on assessing the antimicrobial efficacy of silver-doped zinc oxide nanoparticles (ZnO:9Ag) on standard Leptospira spp. strains (six species and ten serovars).

View Article and Find Full Text PDF

A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications.

Nanomaterials (Basel)

December 2024

Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.

This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p-n junction diodes, etc. are a few of the best uses for this material.

View Article and Find Full Text PDF

Direct preparation of silver nanoclusters is of great significance for their applications. In this work, by selecting sodium cyanoborohydride as a weak reducing agent to control the kinetics of the reduction reaction, we successfully prepared silver nanoclusters protected by thiol-containing ligands, including mercaptosuccinic acid, cysteine, and glutathione. Based on the silver nanoclusters protected by mercaptosuccinic acid, silver-gold alloy nanoclusters were obtained through a gold doping reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!