Black leg and soft rot are devastating diseases causing up to 50% loss of potential potato yield. The search for, and characterization of, bacterial viruses (bacteriophages) suitable for the control of these diseases is currently a sought-after task for agricultural microbiology. Isolated lytic bacteriophages Q19, PP47 and PP81 possess a similar broad host range but differ in their genomic properties. The genomic features of characterized phages have been described and compared to other bacteriophages. Thorough phylogenetic analysis has clarified the taxonomy of the phages and their positioning relative to other genera of the family. phage Q19 seems to represent a new genus not described previously. The genomes of the phages are generally similar to the genome of phage T7 of the genus but possess a number of specific features. Examination of the structure of the genes and proteins of the phages, including the tail spike protein, underlines the important role of horizontal gene exchange in the evolution of these phages, assisting their adaptation to hosts. The results provide the basis for the development of bacteriophage-based biocontrol of potato soft rot as an alternative to the use of antibiotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693777PMC
http://dx.doi.org/10.3390/microorganisms8111707DOI Listing

Publication Analysis

Top Keywords

soft rot
8
phages
5
origin evolution
4
bacteriophages
4
evolution bacteriophages
4
bacteriophages infecting
4
infecting horizontal
4
horizontal transfer
4
transfer assists
4
assists adaptation
4

Similar Publications

is a bacterial phytopathogen that causes soft and black rot and actively spreads worldwide. Our study is the first development of immunoassays for detecting . We immunized rabbits and obtained serum with an extremely high titer (1:10).

View Article and Find Full Text PDF

Bacterial soft rot causes major crop losses annually and can be caused by several species from multiple genera. These bacteria have a broad host range and often infect produce through contact with soil. The main genera causing bacterial soft rot are and , both of which have widespread geographical distribution.

View Article and Find Full Text PDF

The regulator of the canonical Wnt pathway, leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), is expressed in the stem cell compartment of several tissues and overexpressed in different human carcinomas. The isoform of the stem cell marker LGR5, named LGR5Δ5 and first described by our group, is associated with prognosis and metastasis in oral squamous cell carcinoma (OSCC) and soft tissue sarcoma (STS). In a proof-of-principle analysis, the function of LGR5Δ5 was investigated in HEK293T cells, a model cell line of the Wnt pathway, compared to full-length LGR5 (FL) expression.

View Article and Find Full Text PDF

Characterization of Major Cell-Wall-Degrading Enzymes Secreted by spp. Isolate Z1-1N Causing Postharvest Fruit Rot in Kiwifruit in China.

Biology (Basel)

December 2024

Key Laboratory City for Study and Utilization of Ethnic Medicinal Plant Resources of Western Guizhou Province, Liupanshui Normal University, Liupanshui 553004, China.

Pathogen-induced fruit decay is a significant threat to the kiwifruit industry, leading to considerable economic losses annually. The cell-wall-degrading enzymes (CWDEs) secreted by these pathogens are crucial for penetrating the cell wall and accessing nutrients. Among them, species are recognized as major causal agents of soft rot in kiwifruit, yet their pathogenic mechanisms are not well understood.

View Article and Find Full Text PDF

First Report of Causing Collar Rot of gilo in Ghana.

Plant Dis

January 2025

University of Ghana College of Basic and Applied Sciences, Biotechnology Centre, Accra, Greater Accra, Ghana;

African eggplant (Solanum aethiopicum gilo group) is a nutritious vegetable widely commercialized in Ghana. In the 2021 planting season (May-July), collar rot symptoms were observed on African eggplant on a farm at Domeabra, Legon, and Okumaning in the Central (N5° 48' 11″, W1° 26' 48″), Greater Accra (N5° 39' 34″, W0° 11' 34″) and Eastern (N6° 8' 34″, W0° 55' 59″) regions of Ghana, respectively. Disease incidence was 8-15% in the different farms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!