This study assessed the color improvement via zinc protoporphyrin IX (ZnPP) formation in nitrite-free, dry-cured sausages processed using five varieties of ZnPP-forming lactic acid bacteria (LAB). The ZnPP contents and color intensity of the sausages and other technological properties were analyzed during the processing of sausages. LAB count and acidity significantly increased in the LAB-inoculated sausages compared to the control group. The bright red color was observed both inside and outside the sausages inoculated with subsp. and . However, a brown color was observed on the surface of the sausage inoculated with spp. The redness of subsp. -inoculated sausages was close to that of the nitrite-added group. Moreover, the external bright red color was improved by subsp. due to the aerobic formation of ZnPP. Therefore, subsp. can be used to improve the color of fermented meat products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692285PMC
http://dx.doi.org/10.3390/foods9111583DOI Listing

Publication Analysis

Top Keywords

bright red
12
red color
12
zinc protoporphyrin
8
color fermented
8
fermented meat
8
meat products
8
color observed
8
color
7
sausages
6
subsp
5

Similar Publications

Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.

View Article and Find Full Text PDF

Acidic Engineering on Buried Interface toward Efficient Inorganic CsPbI Perovskite Light-Emitting Diodes.

Nano Lett

January 2025

School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.

Inorganic CsPbI perovskite has emerged as a promising emitter for deep-red light-emitting diodes (LEDs) due to its intrinsic thermal stability and suitable bandgap. However, uncontrollable CsPbI crystallization induced by an alkaline zinc oxide (ZnO) substrate in bulk film-based LEDs leads to insufficient external quantum efficiencies (EQEs) at high brightness, leaving obstacles in commercialization progress. Herein, we demonstrate an effective acidic engineering strategy with wide applicability to modify the surface property of ZnO and regulate CsPbI crystallization.

View Article and Find Full Text PDF

Design, Synthesis, and Imaging of a Stable Xanthene-Based Dye with NIR-II Emission up to 1450 nm.

Anal Chem

January 2025

Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China.

The development of long-wavelength near-infrared II (NIR-II, 900-1700 nm) dyes is highly desirable but challenging. To achieve both red-shifted absorption/emission and superior imaging capabilities, a donor-acceptor-donor (D-A-D) xanthene core was strategically modified by extending π-conjugated double bonds and enhancing electron-donating properties. Two dyes named and were synthesized and exhibited notably red-shifted absorption/emission peaks at 942/1250 and 1098/1450 nm, respectively.

View Article and Find Full Text PDF

Eruptive pseudoangiomatosis (EP) is a rare cutaneous condition that usually resolves spontaneously within a few days and is more frequently seen in the pediatric age group. It is characterized by the sudden onset of asymptomatic small erythematous hemangioma-like papules encircled by a pale halo. The precise pathogenesis is unknown; however, multiple environmental triggers have been reported.

View Article and Find Full Text PDF

Stretchable Primary-Blue Color-Conversion Layer: Crystallization of Phase-Engineered Perovskite Nanocrystals in an Organic Matrix.

ACS Nano

January 2025

Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

Although the use of ultraviolet (UV) light-emitting diode backlight with red, green, and blue color-conversion layers (CCLs) in displays simplifies the manufacturing process and improves display uniformity, research on blue CCLs remains limited and has been mostly reported in the sky-blue region (> 470 nm), which is insufficient to satisfy the Rec. 2020 color standard. As halide perovskites offer a high extinction coefficient, color purity, and photoluminescence quantum yield (PLQY), they become highly competitive color-converting materials for CCLs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!