Chitin derived from seafood wastes is a sustainable biopolymer, which can be used to constructe new materials to reduce the environmental pollution caused by non-biodegradable plastics. Herein, nanofibrous microspheres fabricated from chitin solution were used as carriers to construct three different chitin-supported Pd catalysts through diverse activation methods, subsequently revealed their differences in structure and performance. The palladium nanoparticles were firmly and highly dispersed on the microspheres due to the interconnected nanofibrous networks and functional groups of chitin, confirmed by various physicochemical characterizations. As the best candidate catalyst of Pd/chitin-Ar, in the CO oxidation reaction, which achieved 100% CO conversion with a lower Pd content, and exhibited excellent stability in 24-hours cycle reaction. Importantly, the catalyst was further applied in Heck coupling reaction, which also displayed competitive catalytic activity and stability (∼6runs, 94%). This utilizing of biomass resource to build catalyst materials would be important for the sustainable chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2020.117020 | DOI Listing |
Nat Commun
January 2025
College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P. R. China.
The enantioselective domino Heck/cross-coupling has emerged as a powerful tool in modern chemical synthesis for decades. Despite significant progress in relative rigid skeleton substrates, the implementation of asymmetric Heck/cross-coupling cascades of highly flexible haloalkene substrates remains a challenging and and long-standing goal. Here we report an efficient asymmetric domino Heck/Tsuji-Trost reaction of highly flexible vinylic halides with 1,3-dienes enabled by palladium catalysis.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran. Electronic address:
The Heck reaction is one of the most well-known C-C (carbon-carbon) coupling reactions and was identified with the Nobel Prize in Chemistry in 2010. These reactions have been broadly utilized to prepare a different spectrum of heterocycles with applications in agrochemical and pharmaceutical industries. These reactions are commonly catalyzed by palladium due to its tolerance and expansive variousness of functional groups, which bears a remarkable power in creating C-C bonds.
View Article and Find Full Text PDFMolecules
December 2024
Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
Bimetallic PdCu nanoparticles with different Pd:Cu ratios and morphologies can be synthesized and immobilized on a variety of support materials. Accordingly, PdCu nanoparticles can be efficiently applied as heterogeneous catalysts in a large number of organic transformations including C-C coupling and cross-coupling reactions. As related to their favorable electronic and structural interactions, the catalytic performances of PdCu bimetallic nanoparticles may be superior to monometallic species.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
Biaryl motifs are essential structural features in several drugs and functional molecules. Cyclic diaryliodonium has been scarcely explored as a bifunctional agent compared to ring opening and annulation reactions. Herein, a three-component cascade approach is developed to synthesize bifunctionalized biaryls employing cyclic diaryliodoniums as a biarylating agent.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
We present a tandem aza-Heck/Suzuki cross-coupling reaction of -phenyl hydroxamic ethers with readily available arylboronic and alkenyl boronic acids. This protocol is enabled by a palladium catalyst paired with chiral phosphoramidite ligands, particularly under mild reaction conditions, yielding efficient and succinct synthetic routes to chiral isoindolinones with high enantioselectivity. Furthermore, this reaction exhibits excellent functional group compatibility and a rich diversity of subsequent transformations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!