Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils.

Carbohydr Polym

CAS Key Laboratory of Biofuels, Qingdao Industrial Energy Storage Technology Institute, Dalian National Laboratory for Clean Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, PR China. Electronic address:

Published: January 2021

Separator is a vital component of lithium-ion batteries (LIBs) due to its important roles in the safety and electrochemical performance of the batteries. Herein, we reported a cellulose nanofibrils (CNFs) reinforced pure cellulose paper (CCP) as a LIBs separator fabricated by a facile filtration process. The nanosized CNFs played crucial roles as a tuner to optimize the pore size of the as-prepared CCP, and also as a reinforcer to improve the mechanical strength of the resultant CCP. Results showed that the tensile strength of the CCP with 20 wt.% CNFs was 227 % higher compared to the commercial cellulose separator. In addition, the lithium cobalt oxide/lithium metal battery assembled with CCP separator displayed better cycle performance and working stability (capacity retention ratio of 91 % after 100 cycles) compared to the batteries with cellulose separator (52 %) and polypropylene separator (84 %) owing to the multiple synergies between CCP separator and electrolytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.116975DOI Listing

Publication Analysis

Top Keywords

pure cellulose
8
separator
8
pore size
8
working stability
8
cellulose nanofibrils
8
cellulose separator
8
ccp separator
8
ccp
6
cellulose
5
cellulose lithium-ion
4

Similar Publications

Yeast community in the first-round fermentation of sauce-flavor Baijiu: Source, succession and metabolic function.

Food Res Int

January 2025

Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China. Electronic address:

Yeasts play a crucial role in determining the quality and yield of sauce-flavor Baijiu, yet the source, succession, and metabolic functions of the yeast community in fermented grains during stacking fermentation remains unclear. In this study, amplicon sequencing combined with solid-state fermentation was used to investigate the structure and function of yeast community during the first-round fermentation of sauce-flavor Baijiu. The richness and diversity of yeast community increased throughout fermentation, with 83.

View Article and Find Full Text PDF

The practical application of polyethylene glycol (PEG) phase change materials (PCMs) necessitates exceptional shape stability, rapid thermal responsiveness, and a substantial thermal storage capacity. The present study focuses on the fabrication of a highly robust cellulose nanofibril (CNF) based aerogel with an ordered structure, serving as a three-dimensional (3D) scaffold for PEG to effectively prevent any potential leakage. Additionally, hydroxyl and amino functional groups are introduced to functionalize boron nitride nanosheets (BNNS-g), which are incorporated into the aerogel to enhance its thermal conductivity.

View Article and Find Full Text PDF

This study investigates the microstructural characterization of cellulose nanocrystals (CNC) and microcellulose (MC) extracted from bamboo fibers () and their potential as reinforcement agents in ordinary Portland cement (OPC) composites. CNC with a mean particle size of 29.3 nm and MC with a mean size of 14.

View Article and Find Full Text PDF

This study reported a one-spot preparation of magnetic composite carbon (MCC@Fe) from microcrystalline cellulose (MC). The pure cellulose was impregnated in iron (III) chloride solution and carbonized at 650 °C. The MCC@Fe composite adsorbent underwent various characterization techniques.

View Article and Find Full Text PDF

Biomass valorization and bio-based material development are of major research interest following the spirit of the circular economy. Aloe vera cultivation is a widespread agricultural activity oriented toward supplement production because of its well-known antioxidant and antimicrobial properties. Aloe vera juice production also produces a large amount of biomass byproducts that are usually landfilled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!