Broiler live performance may be influenced by postharvest corn drying temperature, and results could depend on particle size after grinding. The supplementation with an exogenous amylase may improve performance parameters, but responses to enzymes are also affected by particle size. Two parallel experiments were conducted to evaluate the effects of hard-kernel corn dried at 2 temperatures (35°C and 120°C), ground at 2 particle sizes (coarse or fine), and 3 supplementation levels (0, 133, and 266 g ton-1) of an exogenous amylase on live performance, gastrointestinal organ development, energy utilization, and nutrient digestibility. Twelve dietary treatments resulting from a 2 × 2 × 3 factorial arrangement of drying temperature, particle size, and amylase supplementation were evaluated in both experiments. A total of 1,920 day-old male chicks were randomly allocated to 96 floor pens, while 480 chicks were distributed among 4 battery brooder units. Ileal and fecal samples were collected to determine energy utilization and nutrient digestibility using titanium dioxide as inert marker. At 42 D, organs were collected, and relative weight or length was determined. Data were analyzed using a three-way ANOVA in a randomized complete block design. Feeding fine corn-based diets showed improvements on live performance for both studies. At 40 D, supplementing 266 g ton-1 of amylase improved feed conversion ratio (P < 0.05) by 1 point compared to chickens that consumed nonsupplemented diets and feed with amylase at 133 g ton-1. Broilers fed coarse corn-based diets had heavier gizzard (P < 0.001) and liver (P < 0.05) than chickens that consumed fine corn-based diets. In addition, starch digestibility was improved by amylase (P < 0.05) at 133 g ton-1 and by feeding coarse corn-based diets (P = 0.06). For chicks raised in cages (16 D), AMEn was increased (P < 0.01) by amylase supplementation regardless of its inclusion level. In conclusion, drying temperature and particle size interactions influenced broiler live performance, gastrointestinal organ development, nutrient digestibility, and energy utilization, and these parameters were improved by supplementing amylase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647712PMC
http://dx.doi.org/10.1016/j.psj.2020.07.010DOI Listing

Publication Analysis

Top Keywords

particle size
16
drying temperature
12
live performance
12
corn drying
8
temperature particle
8
size amylase
8
amylase supplementation
8
exogenous amylase
8
266 g ton-1
8
energy utilization
8

Similar Publications

Background And Aim: Zinc oxide and copper oxide nanoparticles are known for their promising biological activities. This study aims to synthesize zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles to harness the combined cytotoxic and anticancer effects of them in vitro and in vivo studies.

Methods: Zinc oxide nanoparticles, both doped and undoped, were synthesized using a chemical co-precipitation method.

View Article and Find Full Text PDF

In order to provide long-term anti-corrosion properties of the coatings on the substrate, a microcapsule self-healing coatings system was designed in this paper. Microcapsules were synthesized with ethyl cellulose and octadecyl amine, which were added to epoxy resin to prepare self-healing coatings. The shape of microcapsules was spherical, the average particle size of microcapsules was about 100-120 μm, and the average thickness of microcapsules was 4.

View Article and Find Full Text PDF

Albendazole serves as a broad-spectrum anthelmintic medication for treating hydatid cysts and neurocysticercosis. However, its therapeutic effectiveness is limited by poor solubility. Nanocrystals offer a promising technology to address this limitation by enhancing drug solubility.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to present a correlative microscopy-tomography approach in conjunction with machine learning-based image segmentation techniques, with the goal of enabling quantitative structural and compositional elucidation of real-world pharmaceutical tablets.

Methods: Specifically, the approach involves three sequential steps: 1) user-oriented tablet constituent identification and characterization using correlative mosaic field-of-view SEM and energy dispersive X-ray spectroscopy techniques, 2) phase contrast synchrotron X-ray micro-computed tomography (SyncCT) characterization of a large, representative volume of the tablet, and 3) constituent segmentation and quantification of the imaging data through user-guided, iterative supervised machine learning and deep learning.

Results: This approach was implemented on a real-world tablet containing 15% API and multiple common excipients.

View Article and Find Full Text PDF

The current study aims to establish a novel ultra-deformable vesicular system to enhance the drug penetration across the skin by preparing the ketoconazole-loaded menthosomes. It was achieved through regular thin-film evaporation & hydration techniques. To examine the effect of formulation parameters on menthosome characteristics, a 2 full factorial design was used using Design-Expert® software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!