A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Circadian Clock, Shift Work, and Tissue-Specific Insulin Resistance. | LitMetric

The Circadian Clock, Shift Work, and Tissue-Specific Insulin Resistance.

Endocrinology

Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, AZ Amsterdam, the Netherlands.

Published: December 2020

Obesity and type 2 diabetes (T2D) have become a global health concern. The prevalence of obesity and T2D is significantly higher in shift workers compared to people working regular hours. An accepted hypothesis is that the increased risk for metabolic health problems arises from aberrantly timed eating behavior, that is, eating out of synchrony with the biological clock. The biological clock is part of the internal circadian timing system, which controls not only the sleep/wake and feeding/fasting cycle, but also many metabolic processes in the body, including the timing of our eating behavior, and processes involved in glucose homeostasis. Rodent studies have shown that eating out of phase with the endogenous clock results in desynchronization between rhythms of the central and peripheral clock systems and between rhythms of different tissue clocks (eg, liver and muscle clock). Glucose homeostasis is a complex process that involves multiple organs. In the healthiest situation, functional rhythms of these organs are synchronized. We hypothesize that desynchronization between different metabolically active organs contributes to alterations in glucose homeostasis. Here we summarize the most recent information on desynchronization between organs due to shift work and shifted food intake patterns and introduce the concept of phenotypic flexibility, a validated test to assess the contribution of each organ to insulin resistance (IR) in humans. We propose this test as a way to provide further insight into the possible desynchronization between tissue clocks. Because different types of IR benefit from different therapeutic approaches, we also describe different chronotherapeutic strategies to promote synchrony within and between metabolically active organs.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endocr/bqaa180DOI Listing

Publication Analysis

Top Keywords

glucose homeostasis
12
shift work
8
insulin resistance
8
eating behavior
8
biological clock
8
tissue clocks
8
metabolically active
8
active organs
8
clock
5
organs
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!