Despite a growth in molecular radiotherapy treatment (MRT) and an increase in interest, centres still rarely perform MRT dosimetry. The aims of this report were to assess the main reasons why centres are not performing MRT dosimetry and provide advice on the resources required to set-up such a service. A survey based in the United Kingdom was developed to establish how many centres provide an MRT dosimetry service and the main reasons why it is not commonly performed. Twenty-eight per cent of the centres who responded to the survey performed some form of dosimetry, with 88% of those centres performing internal dosimetry. The survey showed that a 'lack of clinical evidence', a 'lack of guidelines' and 'not current UK practice' were the largest obstacles to setting up an MRT dosimetry service. More practical considerations, such as 'lack of software' and 'lack of staff training/expertise', were considered to be of lower significance by the respondents. Following on from the survey, this report gives an overview of the current guidelines, and the evidence available demonstrating the benefits of performing MRT dosimetry. The resources required to perform such techniques are detailed with reference to guidelines, training resources and currently available software. It is hoped that the information presented in this report will allow MRT dosimetry to be performed more frequently and in more centres, both in routine clinical practice and in multicentre trials. Such trials are required to harmonise dosimetry techniques between centres, build on the current evidence base, and provide the data necessary to establish the dose-response relationship for MRT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/abc707 | DOI Listing |
Cancers (Basel)
December 2024
Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia.
: Brain cancer is notoriously resistant to traditional treatments, including radiotherapy. Microbeam radiation therapy (MRT), arrays of ultra-fast synchrotron X-ray beams tens of micrometres wide (called peaks) and spaced hundreds of micrometres apart (valleys), is an effective alternative to conventional treatments. MRT's advantage is that normal tissues can be spared from harm whilst maintaining tumour control.
View Article and Find Full Text PDFSci Rep
January 2025
Universite Claude Bernard Lyon 1, INL, UMR5270, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, 69622, Villeurbanne, France.
Synchrotron microbeam radiotherapy (MRT), which has entered the clinical transfer phase, requires the development of appropriate quality assurance (QA) tools due to very high dose rates and spatial hyperfractionation. A microstrip plastic scintillating detector system with associated modules was proposed in the context of real-time MRT QA. A prototype of such a system with 105 scintillating microstrips was developed and tested under MRT conditions.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, San Francisco, CA, 94143, USA.
The radiobiological mechanisms behind the favorable response of tissues to microbeam radiation therapy (MRT) are not fully described yet. Among other factors, the differential action to tumor and normal tissue vasculature is considered to contribute to MRT efficacy. This computational study evaluates the relevance of tumor growth stage and associated vascular redistribution to this effect.
View Article and Find Full Text PDFFront Oncol
September 2024
Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
In this case report, we present the treatment outcomes of the first patient enrolled in the LuDO-N trial. The patient is a 21-month-old girl diagnosed with high-risk neuroblastoma (NB) and widespread skeletal metastasis. The patient initially underwent first-line therapy according to SIOPEN HRNBL-1 but was switched to second-line treatments due to disease progression, and she was finally screened for enrollment in the LuDO-N trial due to refractory disease.
View Article and Find Full Text PDFPhys Med Biol
July 2024
INFN Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy.
Detectors that can provide accurate dosimetry for microbeam radiation therapy (MRT) must possess intrinsic radiation hardness, a high dynamic range, and a micron-scale spatial resolution. In this work we characterize hydrogenated amorphous silicon detectors for MRT dosimetry, presenting a novel combination of flexible, ultra-thin and radiation-hard features.Two detectors are explored: an n-type/intrinsic/p-type planar diode (NIP) and an NIP with an additional charge selective layer (NIP + CSC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!