Hypoxia theranostics of a human prostate cancer xenograft and the resulting effects on the tumor microenvironment.

Neoplasia

Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD; Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD. Electronic address:

Published: December 2020

Hypoxia is frequently observed in human prostate cancer, and is associated with chemoresistance, radioresistance, metastasis, and castrate-resistance. Our purpose in these studies was to perform hypoxia theranostics by combining in vivo hypoxia imaging and hypoxic cancer cell targeting in a human prostate cancer xenograft. This was achieved by engineering PC3 human prostate cancer cells to express luciferase as well as a prodrug enzyme, yeast cytosine deaminase, under control of hypoxic response elements (HREs). Cancer cells display an adaptive response to hypoxia through the activation of several genes mediated by the binding of hypoxia inducible factors (HIFs) to HRE in the promoter region of target gene that results in their increased transcription. HIFs promote key steps in tumorigenesis, including angiogenesis, metabolism, proliferation, metastasis, and differentiation. HRE-driven luciferase expression allowed us to detect hypoxia in vivo to time the administration of the nontoxic prodrug 5-fluorocytosine that was converted by yeast cytosine deaminase, expressed under HRE regulation, to the chemotherapy agent 5-fluorouracil to target hypoxic cells. Conversion of 5-fluorocytosine to 5-fluorouracil was detected in vivo by F magnetic resonance spectroscopy. Morphological and immunohistochemical staining and molecular analyses were performed to characterize tumor microenvironment changes in cancer-associated fibroblasts, cell viability, collagen 1 fiber patterns, and HIF-1α. These studies expand our understanding of the effects of eliminating hypoxic cancer cells on the tumor microenvironment and in reducing stromal cell populations such as cancer-associated fibroblasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586064PMC
http://dx.doi.org/10.1016/j.neo.2020.10.001DOI Listing

Publication Analysis

Top Keywords

human prostate
16
prostate cancer
16
tumor microenvironment
12
cancer cells
12
hypoxia theranostics
8
cancer xenograft
8
hypoxic cancer
8
yeast cytosine
8
cytosine deaminase
8
cancer-associated fibroblasts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!