Polybrominated diphenyl ethers (PBDEs) are ubiquitously distributed persistent organic pollutants (POPs) in marine environments. Phytoplankton are the entrance of PBDEs entering to biotic environments from abiotic environments, while the responding mechanisms of phytoplankton to PBDEs have not been full established. Therefore, we chose the model diatom Thalassiosira pseudonana in this study, by integrating whole transcriptome analysis with physiological-biochemical data, to reveal the molecular responding mechanisms of T. pseudonana to the toxicity of BDE-47. Our results indicated the changes of genes expressions correlated to the physiological-biochemical changes, and there were multiple molecular mechanisms of T. pseudonana responding to the toxicity of BDE-47: Gene expressions evidence explained the suppression of light reaction and proved the occurrence of cellular oxidative stress; In the meanwhile, up-regulations of genes in pathways involving carbon metabolisms happened, including the Calvin cycle, glycolysis, TCA cycle, fatty acid synthesis, and triacylglycerol synthesis; Lastly, DNA damage was found and three outcome including DNA repair, cell cycle arrest and programmed cell death (PCD) happened, which could finally inhibit the cell division and population growth of T. pseudonana. This study presented the most complete molecular responding mechanisms of phytoplankton cells to PBDEs, and provided valuable information of various PBDEs-sensitive genes with multiple functions for further research involving organic pollutants and phytoplankton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2020.105669 | DOI Listing |
J Hazard Mater
December 2024
Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. Electronic address:
The brominated flame retardant 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) is known as a developmental neurotoxicant, yet the underlying mechanisms remain unclear. This study aims to explore its neurotoxic mechanisms by integrating network toxicology with transcriptomics based on human neural precursor cells (hNPCs) and neuron-like PC12 cells. Network toxicology revealed that PBDE-47 crosses the blood-brain barrier more effectively than heavier PBDE congeners, and is associated with disruptions in 159 biological pathways, including cytosolic DNA-sensing pathway, ferroptosis, cellular senescence, and chemokine signaling pathway.
View Article and Find Full Text PDFSci Total Environ
December 2024
University of Hohenheim, Institute of Food Chemistry, Department of Food Chemistry (170b), D-70599 Stuttgart, Germany. Electronic address:
Methoxylated polybrominated diphenyl ethers (MeO-BDEs) are a class of environmentally relevant halogenated natural products. The two most relevant isomers, 2'-MeO-BDE 68 and 6-MeO-BDE 47, were repeatedly detected at levels comparable with persistent organic pollutants in marine environmental and food samples. MeO-BDEs were suspected to be biosynthesized by bromoperoxidases through the merging of two bromophenol units, three of which (2,4-dibromophenol, 2,6-dibromophenol and 2,4,6-tribromophenol) are abundant in marine environments, followed by O-methylation to give MeO-BDEs.
View Article and Find Full Text PDFToxics
November 2024
School of Public Health, Ningxia Medical University, Yinchuan 750004, China.
Background: The primary flame retardants in vehicles, organophosphates (OPEs) and polybrominated diphenyl ethers (PBDEs), volatilize and accumulate in the enclosed vehicle environment, posing potential health risks. Amidst the rising number of vehicles, the scrutiny of persistent organic pollutants like OPEs and PBDEs in vehicles is increasing. This study investigates occupational and nonoccupational population exposure to specific OPEs (TnBP, TBOEP, TEHP, TCEP, TCiPP, TDCiPP, TPhP, EHDPP) and PBDEs (BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, BDE-209) in vehicle dust.
View Article and Find Full Text PDFEnviron Int
December 2024
Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China. Electronic address:
The nano zero-valent iron (nZVI) activated persulfate (PS) is recognized as a promising approach to degrade 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), which is ubiquitous in the soil at electronic waste sites. However, all the reported studies were performed in liquids, gaps in the real behaviour and microbial contribution to the degradation of BDE-47 in soil media need to be urgently filled. The removal efficiency of BDE-47 is low using traditional nZVI as activator because of its aggregation and corrosion.
View Article and Find Full Text PDFEnviron Pollut
November 2024
College of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou, 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China. Electronic address:
In the homologous series of polybrominated diphenyl ethers (PBDEs), the debromination of low-brominated diphenyl ethers with higher toxicity remains a challenge. Nano zero-valent iron (nZVI) has been extensively studied for the debromination of PBDEs, but its inherent direct electron transfer mechanism is less efficient for low-brominated diphenyl ethers, and there are issues with high preparation costs. In this work, we synthesize Ni-doped oxalated submicron ZVI (Fe/Ni) using a low-cost ball-milling method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!