Independent representations of self-motion and object location in barrel cortex output.

PLoS Biol

Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America.

Published: November 2020

During active tactile exploration, the dynamic patterns of touch are transduced to electrical signals and transformed by the brain into a mental representation of the object under investigation. This transformation from sensation to perception is thought to be a major function of the mammalian cortex. In primary somatosensory cortex (S1) of mice, layer 5 (L5) pyramidal neurons are major outputs to downstream areas that influence perception, decision-making, and motor control. We investigated self-motion and touch representations in L5 of S1 with juxtacellular loose-seal patch recordings of optogenetically identified excitatory neurons. We found that during rhythmic whisker movement, 54 of 115 active neurons (47%) represented self-motion. This population was significantly more modulated by whisker angle than by phase. Upon active touch, a distinct pattern of activity was evoked across L5, which represented the whisker angle at the time of touch. Object location was decodable with submillimeter precision from the touch-evoked spike counts of a randomly sampled handful of these neurons. These representations of whisker angle during self-motion and touch were independent, both in the selection of which neurons were active and in the angle-tuning preference of coactive neurons. Thus, the output of S1 transiently shifts from a representation of self-motion to an independent representation of explored object location during active touch.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665803PMC
http://dx.doi.org/10.1371/journal.pbio.3000882DOI Listing

Publication Analysis

Top Keywords

object location
12
whisker angle
12
self-motion touch
8
active touch
8
touch
6
neurons
6
self-motion
5
active
5
independent representations
4
representations self-motion
4

Similar Publications

The precise and fleeting moment of rich recollection triggered by an environmental cue is difficult to reproduce in the lab. However, epilepsy patients can experience sudden reminiscences after intracranial electrical brain stimulation (EBS). In these cases, the transient brain state related to the activation of the engram and its conscious perception can be recorded using intracerebral EEG (iEEG).

View Article and Find Full Text PDF

Visual analysis has applications in diverse fields, including urban planning and environmental management. This study explores viewshed generation using two distinct datasets: Digital Surface Model (DSM) and LiDAR (Light Detection and Ranging) point cloud data. We assess the differences in viewsheds derived from these sources, evaluating their respective strengths and weaknesses.

View Article and Find Full Text PDF

Spatial updating, the ability to track the egocentric position of surrounding objects during self-motion, is fundamental to navigating around the world. However, people make systematic errors when updating the position of objects after linear self-motion. To determine the source of these errors, we measured errors in remembered target position with or without passive lateral translations.

View Article and Find Full Text PDF

On the transition between autonomous and nonautonomous systems: The case of FitzHugh-Nagumo's model.

Chaos

December 2024

School of Computation Information and Technology, Department of Mathematics, Technical University of Munich, Boltzmannstraße 3, 85748 Garching bei München, Germany.

This work deals with a parametric linear interpolation between an autonomous FitzHugh-Nagumo model and a nonautonomous skewed problem with the same fundamental structure. This paradigmatic example allows us to construct a family of nonautonomous dynamical systems with an attracting integral manifold and a hyperbolic repelling trajectory located within the nonautonomous set enclosed by the integral manifold. Upon the variation of the parameter the integral manifold collapses, the hyperbolic repelling solution disappears and a unique globally attracting hyperbolic solution arises in what could be considered yet another pattern of nonautonomous Hopf bifurcation.

View Article and Find Full Text PDF

In the maritime environment, the instance segmentation of small ships is crucial. Small ships are characterized by their limited appearance, smaller size, and ships in distant locations in marine scenes. However, existing instance segmentation algorithms do not detect and segment them, resulting in inaccurate ship segmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!