Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators.

Sci Robot

Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

Published: April 2018

Dielectric elastomer actuators (DEAs) are a promising enabling technology for a wide range of emerging applications, including robotics, artificial muscles, and microfluidics. This is due to their large actuation strains, rapid response rate, low cost and low noise, high energy density, and high efficiency when compared with alternative actuators. These properties make DEAs ideal for the actuation of soft submersible devices, although their use has been limited because of three main challenges: (i) developing suitable, compliant electrode materials; (ii) the need to effectively insulate the actuator electrodes from the surrounding fluid; and (iii) the rigid frames typically required to prestrain the dielectric layers. We explored the use of a frameless, submersible DEA design that uses an internal chamber filled with liquid as one of the electrodes and the surrounding environmental liquid as the second electrode, thus simplifying the implementation of soft, actuated submersible devices. We demonstrated the feasibility of this approach with a prototype swimming robot composed of transparent bimorph actuator segments and inspired by transparent eel larvae, leptocephali. This design achieved undulatory swimming with a maximum forward swimming speed of 1.9 millimeters per second and a Froude efficiency of 52%. We also demonstrated the capability for camouflage and display through the body of the robot, which has an average transmittance of 94% across the visible spectrum, similar to a leptocephalus. These results suggest a potential for DEAs with fluid electrodes to serve as artificial muscles for quiet, translucent, swimming soft robots for applications including surveillance and the unobtrusive study of marine life.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scirobotics.aat1893DOI Listing

Publication Analysis

Top Keywords

soft robots
8
dielectric elastomer
8
elastomer actuators
8
applications including
8
artificial muscles
8
submersible devices
8
electrodes surrounding
8
translucent soft
4
robots driven
4
driven frameless
4

Similar Publications

Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).

View Article and Find Full Text PDF

Bioinspired Smart Triboelectric Soft Pneumatic Actuator-Enabled Hand Rehabilitation Robot.

Adv Mater

January 2025

Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, 100084, China.

Quantitative assessment for post-stroke spasticity remains a significant challenge due to the encountered variable resistance during passive stretching, which can lead to the widely used modified Ashworth scale (MAS) for spasticity assessment depending heavily on rehabilitation physicians. To address these challenges, a high-force-output triboelectric soft pneumatic actuator (TENG-SPA) inspired by a lobster tail is developed. The bioinspired TENG-SPA can generate approximately 20 N at 0.

View Article and Find Full Text PDF

The pursuit for advanced magnetoelectric field sensors has gained momentum, driven by applications in various fields, ranging from biomedical applications to soft robotics and the automotive sector. In this context, a capacitive read-out based magnetostrictive polymer composite (MPC) sensor element is introduced, offering a new perspective on magnetic field detection. The sensor element's unique feature is the possibility to independently tailor its mechanical and magnetic properties.

View Article and Find Full Text PDF

The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.

View Article and Find Full Text PDF

Exploring New Tools in Upper Limb Rehabilitation After Stroke Using an Exoskeletal Aid: A Pilot Randomized Control Study.

Healthcare (Basel)

January 2025

Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.

Background/objectives: Spasticity commonly occurs in individuals after experiencing a stroke, impairing their hand function and limiting activities of daily living (ADLs). In this paper, we introduce an exoskeletal aid, combined with a set of augmented reality (AR) games consisting of the Rehabotics rehabilitation solution, designed for individuals with upper limb spasticity following stroke.

Methods: Our study, involving 60 post-stroke patients (mean ± SD age: 70.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!