A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computational Investigation of the Binding Dynamics of Oligo -Phenylene Ethynylene Fluorescence Sensors and Aβ Oligomers. | LitMetric

Computational Investigation of the Binding Dynamics of Oligo -Phenylene Ethynylene Fluorescence Sensors and Aβ Oligomers.

ACS Chem Neurosci

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque 87131, New Mexico, United States.

Published: November 2020

Amyloid protein aggregates are pathological hallmarks of neurodegenerative disorders such as Alzheimer's (AD) and Parkinson's (PD) diseases and are believed to be formed well before the onset of neurodegeneration and cognitive impairment. Monitoring the course of protein aggregation is thus vital to understanding and combating these diseases. We have recently demonstrated that a novel class of fluorescence sensors, oligomeric -phenylene ethynylene (PE)-based electrolytes (OPEs) selectively bind to and detect prefibrillar and fibrillar aggregates of AD-related amyloid-β (Aβ) peptides over monomeric Aβ. In this study, we investigated the binding between two OPEs, anionic OPE and cationic OPE, and to two different β-sheet rich Aβ oligomers using classical all-atom molecular dynamics simulations. Our simulations have revealed a number of OPE binding sites on Aβ oligomer surfaces, and these sites feature hydrophobic amino acids as well as oppositely charged amino acids. Binding energy calculations show energetically favorable interactions between both anionic and cationic OPEs with Aβ oligomers. Moreover, OPEs bind as complexes as well as single molecules. Compared to free OPEs, Aβ protofibril bound OPEs show backbone planarization with restricted rotations and reduced hydration of the ethyl ester end groups. These characteristics, along with OPE complexation, align with known mechanisms of binding induced OPE fluorescence turn-on and spectral shifts from a quenched, unbound state in aqueous solutions. This study thus sheds light on the molecular-level details of OPE-Aβ protofibril interactions and provides a structural basis for fluorescence turn-on sensing modes of OPEs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739895PMC
http://dx.doi.org/10.1021/acschemneuro.0c00360DOI Listing

Publication Analysis

Top Keywords

aβ oligomers
12
-phenylene ethynylene
8
fluorescence sensors
8
amino acids
8
opes aβ
8
fluorescence turn-on
8
7
opes
7
binding
5
ope
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!