Origins of Irreversibility in Layered NaNiFeMnO Cathode Materials for Sodium Ion Batteries.

ACS Appl Mater Interfaces

Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States.

Published: November 2020

Layered NaNiFeMnO cathode (NFM) is of great interest in sodium ion batteries because of its high theoretical capacity and utilization of abundant, low-cost, environmentally friendly raw materials. Nevertheless, there remains insufficient understanding on the concurrent local environment evolution in each transition metal (TM) that largely influences the reversibility of the cathode materials upon cycling. In this work, we investigate the reversibility of TM ions in layered NFMs with varying Fe contents and potential windows. Utilizing synchrotron X-ray absorption near-edge spectroscopy and extended X-ray absorption fine structure of precycled samples, the valence and bonding evolution of the TMs are elucidated. It is found that Mn is electrochemically inactive, as indicated by the insignificant change of Mn valence and the Mn-O bonding distance. Fe is electrochemically inactive after the first five cycles. The Ni redox couple contributes most of the charge compensation for NFMs. Ni redox is quite reversible in the cathodes with less Fe content. However, the Ni redox couple shows significant irreversibility with a high Fe content of 0.8. The electrochemical reversibility of the NFM cathode becomes increasingly enhanced with the decrease of either Fe content or with lower upper charge cutoff potential.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c13850DOI Listing

Publication Analysis

Top Keywords

layered nanifemno
8
nanifemno cathode
8
cathode materials
8
sodium ion
8
ion batteries
8
x-ray absorption
8
electrochemically inactive
8
redox couple
8
origins irreversibility
4
irreversibility layered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!