A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Doxycycline-Coated Silicone Breast Implants Reduce Acute Surgical-Site Infection and Inflammation. | LitMetric

Doxycycline-Coated Silicone Breast Implants Reduce Acute Surgical-Site Infection and Inflammation.

Plast Reconstr Surg

From the Sections of Surgical Research and Plastic, Reconstructive, and Hand Surgery, Department of Surgery, and the Department of Chemistry, College of Arts and Science, University of Cincinnati; the Division of Surgery, Shriners Hospital for Children; and the Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen.

Published: November 2020

AI Article Synopsis

  • - Doxycycline-coated breast implants were developed to combat surgical-site infections after implant-based breast reconstruction by reducing biofilm formation and inflammation caused by bacterial infections.
  • - The study involved both in vitro testing and animal models, showing that the coated implants were effective in preventing bacterial adherence and colonization while remaining non-toxic to surrounding tissues.
  • - Results indicated that these doxycycline-coated implants not only significantly lowered the presence of harmful bacteria like MRSA and Pseudomonas but also reduced inflammation in comparison to standard control treatments.

Article Abstract

Background: Surgical-site infection after implant-based breast reconstruction remains a leading cause of morbidity. Doxycycline is an antibiotic used to treat soft-tissue infections. The authors hypothesize that doxycycline-coated breast implants will significantly reduce biofilm formation, surgical-site infection, and inflammation after bacterial infection.

Methods: Pieces of silicone breast implants were coated in doxycycline. In vitro studies to characterize the coating include Fourier transmission infrared spectroscopy, elution data, and toxicity assays (n = 4). To evaluate antimicrobial properties, coated implants were studied after methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa inoculation in vitro and in a mouse model at 3 and 7 days (n = 8). Studies included bacterial quantification, cytokine profiles, and histology.

Results: Coated silicone breast implants demonstrated a color change, increased mass, and Fourier transmission infrared spectroscopy consistent with a doxycycline coating. Coated implants were nontoxic to fibroblasts and inhibited biofilm formation and bacterial adherence after MRSA and P. aeruginosa incubation in vitro, and measurable doxycycline concentrations at 24 hours were seen. In a mouse model, a significant reduction of MRSA and P. aeruginosa bacterial colonization after 3 and 7 days in the doxycycline-coated implant mice was demonstrated when compared to the control mice, control mice treated with intraperitoneal doxycycline, and control mice treated with a gentamicin/cefazolin/bacitracin wash. Decreased inflammatory cytokines and inflammatory cell infiltration were demonstrated in the doxycycline-coated mice.

Conclusions: A method to coat silicone implants with doxycycline was developed. The authors' doxycycline-coated silicone implants significantly reduced biofilm formation, surgical-site infections, and inflammation. Further studies are needed to evaluate the long-term implications.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0000000000007277DOI Listing

Publication Analysis

Top Keywords

breast implants
16
silicone breast
12
surgical-site infection
12
biofilm formation
12
control mice
12
doxycycline-coated silicone
8
implants
8
infection inflammation
8
formation surgical-site
8
fourier transmission
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!