Immune checkpoint blocking (ICB) is a promising new tool of cancer treatment. Yet, the underlying therapeutic mechanisms are not fully understood. Here we investigated the role of dendritic cells (DCs) for the therapeutic effect of ICB in a λ-MYC-transgenic mouse model of endogenously arising B-cell lymphoma. The growth of these tumors can be effectively delayed by antibodies against CTLA-4 and PD-1. Tumor-infiltrating DCs from mice having received therapy showed an upregulation of costimulatory molecules as well as an augmented IL-12/IL-10 ratio as compared to untreated controls. Both alterations seemed to be induced by interferon-γ (IFN-γ), which is upregulated in T cells and natural killer cells upon ICB. Furthermore, the enhanced IL-12/IL-10 ratio, which favors Th1-prone antitumor T-cell responses, was a consequence of direct interaction of ICB antibodies with DCs. Importantly, the capability of tumor-infiltrating DCs of stimulating peptide-specific or allogeneic T-cell responses in vitro was improved when DCs were derived from ICB-treated mice. The data indicate that ICB therapy is not only effective by directly activating T cells, but also by triggering a complex network, in which DCs play a pivotal role at the interface between innate and adaptive antitumor responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053142 | PMC |
http://dx.doi.org/10.1007/s00262-020-02767-6 | DOI Listing |
Front Oncol
December 2024
Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China.
Introduction: Despite the established influence of gut bacteria, the role of the gut virome in modulating colorectal cancer (CRC) patient chemotherapy response remains poorly understood. In this study, we investigated the impact of antiviral (AV) drug-induced gut virome dysbiosis on the efficacy of 5-FU in CRC treatment.
Methods: Using a subcutaneous CRC mouse model, we assessed tumor growth and immune responses following AV treatment, fecal microbiota transplantation (FMT), and 5-FU administration.
Gastro Hep Adv
August 2024
Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.
The development of hepatic metastases is the leading cause of mortality in gastrointestinal (GI) cancers and substantial research efforts have been focused on elucidating the intricate mechanisms by which tumor cells successfully migrate to, invade, and ultimately colonize the liver parenchyma. Recent evidence has shown that perturbations in myeloid biology occur early in cancer development, characterized by the initial expansion of specific innate immune populations that promote tumor growth and facilitate metastases. This review summarizes the pathophysiology underlying the proliferation of myeloid cells that occurs with incipient neoplasia and explores the role of innate immune-host interactions, specifically granulocytes and neutrophil extracellular traps, in promoting hepatic colonization by tumor cells through the formation of the "premetastatic niche".
View Article and Find Full Text PDFDiscov Oncol
January 2025
Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
Introduction: With the increasing impact of hepatocellular carcinoma (HCC) on society, there is an urgent need to propose new HCC diagnostic biomarkers and identification models. Histone lysine lactylation (Kla) affects the prognosis of cancer patients and is an emerging target in cancer treatment. However, the potential of Kla-related genes in HCC is poorly understood.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.
Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy.
View Article and Find Full Text PDFMol Biomed
January 2025
Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
Cancer vaccines, crucial in the immunotherapeutic landscape, are bifurcated into preventive and therapeutic types, both integral to combating oncogenesis. Preventive cancer vaccines, like those against HPV and HBV, reduce the incidence of virus-associated cancers, while therapeutic cancer vaccines aim to activate dendritic cells and cytotoxic T lymphocytes for durable anti-tumor immunity. Recent advancements in vaccine platforms, such as synthetic peptides, mRNA, DNA, cellular, and nano-vaccines, have enhanced antigen presentation and immune activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!