Introduction: Electronic cigarettes (e-cigarettes) have rapidly evolved since their introduction to the U.S. market. The rebuildable atomizer (RBA) offers user-driven modification to the heating element (coil) and wicking systems. Different coil materials can be chosen based on user needs and preferences. However, the heating element of an e-cigarette is believed to be one-source for toxic metal exposure.

Methods: E-cigarette coils from Kanthal and nichrome wires were constructed in a contact and non-contact configuration and heated at four voltages. The maximum temperatures of the coils were measured by infrared temperature sensing when dry and when saturated with 100% vegetable glycerin or 100% propylene glycol. The metal composition of each coil was analyzed with Scanning Electron Microscopy-Energy-Dispersive X-Ray (SEM-EDX) when new, and subsequently after 1, 50, and 150 heat cycles when dry.

Results: The coils reached temperatures above 1000 °C when dry, but were below 300 °C in both liquid-saturated mediums. Metal analysis showed a decrease of 9-19% chromium and 39-58% iron in Kanthal wire and a decrease of 12-14% iron and 39-43% nickel in nichrome wire after 150 heat cycles. Significant metal loss was observed after one heat cycle for both coil alloys and configurations.

Conclusions: The loss of metals from these heat cycles further suggests that the metals from the coils are potentially entering the aerosol of the e-cigarette, which can be inhaled by the user.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846427PMC
http://dx.doi.org/10.1080/08958378.2020.1840678DOI Listing

Publication Analysis

Top Keywords

heat cycles
12
toxic metal
8
metal analysis
8
infrared temperature
8
temperature sensing
8
scanning electron
8
heating element
8
150 heat
8
coil
5
metal
5

Similar Publications

Effect of uniaxial bending methods on the flexural strength and Weibull analysis of heat-polymerized, CAD/CAM milled, and 3D-printed denture base resins.

Dent Mater

January 2025

Department of Oral Technology, Medical Faculty, University Hospital Bonn, Bonn, North Rhine-Westphalia, Germany; Department of Fixed Prosthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt.

Objectives: To compare the flexural strength and modulus of denture base resins manufactured by conventional methods, 3-dimensional (3D) printing, and computer-aided design and computer-aided manufacturing (CAD/CAM) milling using 3-point bending (3PB) and 4-point bending (4PB) methods after simulated aging.

Methods: Ninety bars (64 ×10 ×3.3 mm) were prepared from heat-polymerized (Lucitone-199), CAD/CAM milled (G-CAM), and 3D-printed (Denturetec) denture base resins (n = 30 per material).

View Article and Find Full Text PDF

Microbial activity in the deep continental subsurface is difficult to measure due to low cell densities, low energy fluxes, cryptic elemental cycles and enigmatic metabolisms. Nonetheless, direct access to rare sample sites and sensitive laboratory measurements can be used to better understand the variables that govern microbial life underground. In this study, we sampled fluids from six boreholes at depths ranging from 244 m to 1,478 m below ground at the Sanford Underground Research Facility (SURF), a former goldmine in South Dakota, United States.

View Article and Find Full Text PDF

Stress signaling, response, and adaptive mechanisms in submerged macrophytes under PFASs and warming exposure.

Environ Pollut

January 2025

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Heat stress disturbs cellular homeostasis and alters the fitness of individual organisms. However, it is unclear whether thermal perturbations exacerbate the toxic effects of per- and polyfluorinated alkyl substances (PFASs) on trophic endpoints in freshwater ecosystems. We conducted a mesocosm experiment to investigate the impact of warming and PFASs on the widespread submerged macrophytes (Hydrilla verticillata) at a molecular level.

View Article and Find Full Text PDF

Take a Deep BReath: Manipulating brassinosteroid homeostasis helps cereals adapt to environmental stress.

Plant Physiol

January 2025

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.

Global climate change leads to the increased occurrence of environmental stress (including drought and heat stress) during the vegetative and reproductive stages of cereal crop development. Thus, more attention should be given to developing new cereal cultivars with improved tolerance to environmental stress. However, during the development of new stress-tolerant cereal cultivars, the balance between improved stress responses (which occur at the expense of growth) and plant yield needs to be maintained.

View Article and Find Full Text PDF
Article Synopsis
  • Aedes aegypti mosquitoes are key carriers of dengue, and factors like urbanization, climate change, and trade are affecting their populations.
  • Higher temperatures have been shown to impact insect mortality and fertility, with this study focusing on how heat influences the fertility of Ae. aegyti across different generations.
  • Results indicated that while mosquitoes can acclimate to heat, their fertility declines with increasing temperatures, affecting both male and female mosquitoes’ ability to reproduce and produce viable offspring, which could impact their populations in warmer climates.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!