Background And Purpose: Pulmonary veno-occlusive disease (PVOD) is a rare disease characterized by the obstruction of small pulmonary veins leading to pulmonary hypertension. However, the mechanisms underlying pulmonary vessel occlusion remain largely unclear.
Experimental Approach: A mitomycin C (MMC)-induced PVOD rat model was used as in vivo animal model, and primarily cultured rat pulmonary microvascular endothelial cells (PMVECs) were used as in vitro cell model.
Key Results: Our data suggested an endothelial-to-mesenchymal transition (EndoMT) may be present in the pulmonary microvessels isolated from either PVOD patients or MMC-induced PVOD rats. In comparison to the control vessels, vessels from both PVOD patients and PVOD rats had co-localized staining of specific endothelial marker von Willebrand factor (vWF) and mesenchymal marker α-smooth muscle actin (α-SMA), suggesting the presence of cells that co-express endothelial and mesenchymal markers. In both the lung tissues of MMC-induced PVOD rats and MMC-treated rat PMVECs there were decreased levels of endothelial markers (e.g. VE-cadherin and CD31) and increased mesenchymal markers (e.g. vimentin, fibronectin and α-SMA) were detected indicating EndoMT. Moreover, MMC-induced activation of the TGFβ/Smad3/Snail axis, while blocking this pathway with either selective Smad3 inhibitor (SIS3) or small interfering RNA (siRNA) against Smad3, dramatically abolished the MMC-induced EndoMT. Notably, treatment with SIS3 remarkably prevented the pathogenesis of MMC-induced PVOD in rats.
Conclusions And Implications: Our data indicated that targeted inhibition of Smad3 leads to a potential, novel strategy for PVOD therapy, likely by inhibiting the EndoMT in pulmonary microvasculature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bph.15314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!