Safflower, a minor oilseed crop, is gaining increased attention for food and industrial uses. Safflower genebank collections are an important genetic resource for crop enhancement and future breeding programs. In this study, we investigated the population structure of a safflower collection sourced from the Australian Grain Genebank and assessed the potential of genomic prediction (GP) to evaluate grain yield and related traits using single and multi-site models. Prediction accuracies (PA) of genomic best linear unbiased prediction (GBLUP) from single site models ranged from 0.21 to 0.86 for all traits examined and were consistent with estimated genomic heritability (h ), which varied from low to moderate across traits. We generally observed a low level of genome × environment interactions (g × E). Multi-site g × E GBLUP models only improved PA for accessions with at least some phenotypes in the training set. We observed that relaxing quality filtering parameters for genotype-by-sequencing (GBS), such as missing genotype call rate, did not affect PA but upwardly biased h estimation. Our results indicate that GP is feasible in safflower evaluation and is potentially a cost-effective tool to facilitate fast introgression of desired safflower trait variation from genebank germplasm into breeding lines.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tpg2.20064DOI Listing

Publication Analysis

Top Keywords

genomic prediction
8
genomic heritability
8
grain yield
8
yield traits
8
safflower genebank
8
safflower
6
genomic
5
prediction genomic
4
heritability grain
4
traits
4

Similar Publications

Background: The homologous recombination deficiency (HRD) test is an important tool for identifying patients with epithelial ovarian cancer (EOC) benefit from the treatment with poly(adenosine diphosphate-ribose) polymerase inhibitor (PARPi). Using whole exome sequencing (WES)-based platform can provide information of gene mutations and HRD score; however, the clinical value of WES-based HRD test was less validated in EOC.

Methods: We enrolled 40 patients with EOC in the training cohort and 23 in the validation cohort.

View Article and Find Full Text PDF

Assessment of relationships between epigenetic age acceleration and multiple sclerosis: a bidirectional mendelian randomization study.

Epigenetics Chromatin

January 2025

Department of Neurology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China.

Background: The DNA methylation-based epigenetic clocks are increasingly recognized for their precision in predicting aging and its health implications. Although prior research has identified connections between accelerated epigenetic aging and multiple sclerosis, the chronological and causative aspects of these relationships are yet to be elucidated. Our research seeks to clarify these potential causal links through a bidirectional Mendelian randomization study.

View Article and Find Full Text PDF

Development and evaluation of patient-centred polygenic risk score reports for glaucoma screening.

BMC Med Genomics

January 2025

Department of Ophthalmology, Flinders Medical and Health Research Institute, Flinders University, Adelaide, SA, Australia.

Background: Polygenic risk scores (PRS), which provide an individual probabilistic estimate of genetic susceptibility to develop a disease, have shown effective risk stratification for glaucoma onset. However, there is limited best practice evidence for reporting PRS and patient-friendly reports for communicating PRS effectively are lacking. Here we developed patient-centred PRS reports for glaucoma screening based on the literature, and evaluated them with participants using a qualitative research approach.

View Article and Find Full Text PDF

Background: The clinical manifestations of PI4KA-related disorders are characterized by considerable variability, predominantly featuring neurological impairments, gastrointestinal symptoms, and a combined immunodeficiency. The aim of this study was to delineate the novel spectrum of PI4KA variants detected prenatally and to assess their influence on fetal development.

Methods: A thorough fetal ultrasound screening was conducted, supplemented by both antenatal and post-abortion magnetic resonance imaging (MRI) studies.

View Article and Find Full Text PDF

Novel predictive biomarkers for atonic postpartum hemorrhage as explored by proteomics and metabolomics.

BMC Pregnancy Childbirth

January 2025

Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Peking University Third Hospital), National Center for Healthcare Quality Management in Obstetrics, Beijing, 100191, China.

Background: Postpartum hemorrhage (PPH) is the leading cause of maternal mortality worldwide, with uterine atony accounting for approximately 70% of PPH cases. However, there is currently no effective prediction method to promote early management of PPH. In this study, we aimed to screen for potential predictive biomarkers for atonic PPH using combined omics approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!