The development of checkpoint inhibitors has changed the treatment paradigm for cancer. Checkpoint inhibitors nivolumab, pembrolizumab, and cemiplimab target programmed death-1 (PD-1), whereas durvalumab, avelumab, and atezolizumab target PD-ligand 1. Ipilimumab targets cytotoxic T lymphocyte-associated antigen 4. Used as monotherapy or in combination, these inhibitors have shown remarkable efficacy in melanoma, lung cancer, urothelial cancer, and many other solid tumors, and indications are continuing to evolve. Checkpoint inhibitors are well tolerated when compared with traditional chemotherapy. The major adverse effect profiles are idiosyncratic immune-mediated toxicities resulting from the abnormal activation of autoreactive T cells, which can lead to inflammation in any organ system. The most commonly affected organs are bowel, lung, skin, and endocrine. Pulmonary toxicity is important to recognize, and it can be more challenging to diagnose in lung cancer patients, given the nature of the disease course and treatment. This review article focuses on all of the pulmonary adverse effects of a single PD-1 inhibitor (nivolumab) that have been described in the literature. These complications include dyspnea, pneumonitis, pleural effusion, pulmonary sarcoidosis, pulmonary tuberculosis, acute fibrinous organizing pneumonia, organizing pneumonia, eosinophilic pneumonia, adult respiratory distress syndrome, and lung cavitation. Clinicians must be aware of these toxicities and mindful when prescribing these medications in patients with known lung dysfunction due to chronic lung diseases or lung cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587235 | PMC |
http://dx.doi.org/10.14423/SMJ.0000000000001166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!