We present a method for measuring the optical absorption cross section ([Formula: see text]) of gold nanoparticles (GNPs) based on optically heating the solution of GNPs with an 808 nm near-infrared (NIR) laser and measuring the temperature increase of the solution. We rely on the theoretical calculations based on the heat diffusion equations and experimental measurements based on the energy balance equations to measure the [Formula: see text] and the temperature distribution of single GNPs. Several morphologies, including gold nanospheres (GNSs), spherical gold nanoparticle conjugate (AuNPC), which are 20 nm GNSs surface-functionalized with an IR 808 dye, gold nanorods (GNRs), and gold nanourchins (GNUs), were studied. The study found that a single 20 nm GNS has the lowest [Formula: see text] and temperature distribution as compared to 100 nm GNUs. By increasing the size of GNSs from 20 to 30 nm, the magnitude of [Formula: see text] as well as temperature distribution increases by a factor of 5. The [Formula: see text] values of 20 and 30 nm GNSs calculated by Mie theory and the experimentally measured are in a good agreement. GNRs with equivalent radius ([Formula: see text]) 9.16 nm show the second lowest [Formula: see text]. By increasing the [Formula: see text] by a factor of 2 to 19.2 nm, the measured [Formula: see text] and temperature distribution also increased by a factor of 2. We also estimated [Formula: see text] for GNUs with diameters at 80 and 100 nm, which also have higher [Formula: see text] values. This work confirms that we can use temperature to accurately measure the [Formula: see text] of a variety of GNPs in solution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7606525 | PMC |
http://dx.doi.org/10.1038/s41598-020-75895-9 | DOI Listing |
Proc Biol Sci
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405, USA.
The factors contributing to the persistence and stability of life are fundamental for understanding complex living systems. Organisms are commonly challenged by harsh and fluctuating environments that are suboptimal for growth and reproduction, which can lead to extinction. Many species contend with unfavourable and noisy conditions by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics, School of Advanced Sciences, VIT-AP University, Besides AP Secretariate, Amaravati, Andhra Pradesh, 522237, India.
Heavy hexagonal coding is a type of quantum error-correcting coding in which the edges and vertices of a low-degree graph are assigned auxiliary and physical qubits. While many topological code decoders have been presented, it is still difficult to construct the optimal decoder due to leakage errors and qubit collision. Therefore, this research proposes a Re-locative Guided Search optimized self-sparse attention-enabled convolutional Neural Network with Long Short-Term Memory (RlGS2-DCNTM) for performing effective error correction in quantum codes.
View Article and Find Full Text PDFSci Rep
January 2025
Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia.
Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Fayoum University, Fayoum, Egypt.
This research investigates the potential of utilizing types of construction waste as partial cement replacements within concrete formulations. Notably, granodiorite and ceramic powders were introduced at varying substitution ratios. The impact of these waste materials on the compressive strength and radiation shielding effectiveness of traditional concrete was evaluated under both ambient and elevated temperature conditions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.
In this study, we investigate the [Formula: see text]-D Jaulent-Miodek (JM) equation, which is significant due to its energy-based Schrödinger potential and applications in fields such as optics, soliton theory, signal processing, geophysics, fluid dynamics, and plasma physics. Given its broad utility, a rigorous mathematical analysis of the JM equation is essential. The primary objective of this work is to derive exact soliton solutions using the Modified Sub-Equation (MSE) and Modified Auxiliary Equation (MAE) techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!