The recent exploration of various medicinal plants for bioactive potential has led to the growing interest to explore their endophytes for such bioactive potential which may turn out to be better option than the plants. In the present study, Chaetomium globosum, an endophytic fungus isolated from Moringa oleifera Lam has been explored for its various biological activities. The chloroformic extract of C. globosum showed good antimutagenicity against the reactive carcinogenic mutagen, 2-aminofluorene (2-AF) in Ames test. The antiproliferative activity against various cell lines such as HCT-15, HeLa and U87-MG was found to be dose dependent and the viability reduced to 9.26%, 15.7% and 16.3%, respectively. Further, the chloroformic fungal extract was investigated for free radical scavenging activity using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethyl-benzthiazolin-6-sulfonic acid) assay which showed the IC value of 45.16 µg/ml and 50.55 µg/ml, respectively. The fungal extract also showed good ferric reducing power. Total phenolic and flavonoid content was found to be in linear relationship with the antioxidant potential of the fungal extract. High performance liquid chromatography showed the presence of phenolics which may help to combat the free radicals. The presence of various bioactive compounds was analysed by GC-MS which endorsed Chaetomium globosum to be a promising candidate for drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7606472PMC
http://dx.doi.org/10.1038/s41598-020-75722-1DOI Listing

Publication Analysis

Top Keywords

bioactive potential
12
chaetomium globosum
12
fungal extract
12
endophytic fungus
8
bioactive
4
potential endophytic
4
fungus chaetomium
4
globosum
4
globosum gc-ms
4
gc-ms analysis
4

Similar Publications

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

Multifunctional electrospinning periosteum: Development status and prospect.

J Biomater Appl

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China.

In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively.

View Article and Find Full Text PDF

Background: Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico.

View Article and Find Full Text PDF

The connection between gut microbiota and factors like diet is crucial for maintaining intestinal balance, which in turn impacts the host's overall health. microalgae is a sustainable source of bioactive compounds, mainly known for its used in aquaculture and extraction of bioactive lipids, with potential health benefits whose effects on human gut microbiota are still unknown. Therefore, the goal of this work was to assess the impact of on human gut microbiota composition and derived metabolites by combining the INFOGEST protocol and in vitro colonic fermentation process to evaluate potential effects on human gut microbiota conformation through 16S rRNA gene sequencing and its metabolic functionality.

View Article and Find Full Text PDF

Microalgae are photosynthetic microorganisms that have a rapid growth cycle and carbon fixation ability. They have diverse cellular structures, ranging from prokaryotic cyanobacteria to more complex eukaryotic forms, which enable them to thrive in a variety of environments and support biomass production. They utilize both photosynthesis and heterotrophic pathways, indicating their ecological importance and potential for biotechnological applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!