Role of Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics.

Antibiotics (Basel)

Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.

Published: November 2020

Artificial intelligence (AI) is a field of science and engineering concerned with the computational understanding of what is commonly called intelligent behavior. AI is extremely useful in many human activities including medicine. The aim of our narrative review is to show the potential role of AI in fighting antimicrobial resistance in pediatric patients. We searched for PubMed articles published from April 2010 to April 2020 containing the keywords "artificial intelligence", "machine learning", "antimicrobial resistance", "antimicrobial stewardship", "pediatric", and "children", and we described the different strategies for the application of AI in these fields. Literature analysis showed that the applications of AI in health care are potentially endless, contributing to a reduction in the development time of new antimicrobial agents, greater diagnostic and therapeutic appropriateness, and, simultaneously, a reduction in costs. Most of the proposed AI solutions for medicine are not intended to replace the doctor's opinion or expertise, but to provide a useful tool for easing their work. Considering pediatric infectious diseases, AI could play a primary role in fighting antibiotic resistance. In the pediatric field, a greater willingness to invest in this field could help antimicrobial stewardship reach levels of effectiveness that were unthinkable a few years ago.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692722PMC
http://dx.doi.org/10.3390/antibiotics9110767DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
fighting antimicrobial
8
antimicrobial resistance
8
role fighting
8
resistance pediatric
8
role artificial
4
intelligence fighting
4
antimicrobial
4
resistance pediatrics
4
pediatrics artificial
4

Similar Publications

Digital Representation of Patients as Medical Digital Twins: Data-Centric Viewpoint.

JMIR Med Inform

January 2025

INSERM U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 30 Bd Jean Monnet, Nantes, 44093, France, 33 2 40 08 74 10.

Precision medicine involves a paradigm shift toward personalized data-driven clinical decisions. The concept of a medical "digital twin" has recently become popular to designate digital representations of patients as a support for a wide range of data science applications. However, the concept is ambiguous when it comes to practical implementations.

View Article and Find Full Text PDF

AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist.

J Cheminform

January 2025

School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.

G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.

View Article and Find Full Text PDF

Background: The role that sleep patterns play in sepsis risk remains poorly understood.

Objectives: The objective was to evaluate the association between various sleep behaviours and the incidence of sepsis.

Methods: In this prospective cohort study, we analysed data from the UK Biobank (UKB).

View Article and Find Full Text PDF

Background: Although artificial intelligence (AI) has gained increasing attention for its potential future impact on clinical practice, medical education has struggled to stay ahead of the developing technology. The question of whether medical education is fully preparing trainees to adapt to potential changes from AI technology in clinical practice remains unanswered, and the influence of AI on medical students' career preferences remains unclear. Understanding the gap between students' interest in and knowledge of AI may help inform the medical curriculum structure.

View Article and Find Full Text PDF

Background: Fetal growth restriction (FGR) is a leading risk factor for stillbirth, yet the diagnosis of FGR confers considerable prognostic uncertainty, as most infants with FGR do not experience any morbidity. Our objective was to use data from a large, deeply phenotyped observational obstetric cohort to develop a probabilistic graphical model (PGM), a type of "explainable artificial intelligence (AI)", as a potential framework to better understand how interrelated variables contribute to perinatal morbidity risk in FGR.

Methods: Using data from 9,558 pregnancies delivered at ≥ 20 weeks with available outcome data, we derived and validated a PGM using randomly selected sub-cohorts of 80% (n = 7645) and 20% (n = 1,912), respectively, to discriminate cases of FGR resulting in composite perinatal morbidity from those that did not.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!