Metallic Action! The Dynamics of a Tripartite Iron Uptake Complex in Arabidopsis Roots.

Plant Physiol

Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, 78060-900 Cuiabá/MT, Brazil

Published: November 2020

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608156PMC
http://dx.doi.org/10.1104/pp.20.01271DOI Listing

Publication Analysis

Top Keywords

metallic action!
4
action! dynamics
4
dynamics tripartite
4
tripartite iron
4
iron uptake
4
uptake complex
4
complex arabidopsis
4
arabidopsis roots
4
metallic
1
dynamics
1

Similar Publications

Foxing of Watercolor Paper and Environmental Control as Preventive Actions.

Chempluschem

December 2024

Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, SINGAPORE.

In Singapore's hot and humid climate, watercolor papers are particularly prone to a paper oxidation issue known as foxing, which refers to the discoloration forming yellowish-brown stains on paper, changing the visual outcome of the watercolor artworks. This research investigates two most popular types of watercolor paper, made from 100% cotton and cotton-wood-pulp mixture. Foxing was generally categorized into two types: biotic and abiotic foxing caused by fungi activities and the presence of metallic contaminants catalytic fungi growth.

View Article and Find Full Text PDF

Single-Atom based Metal-Organic Frameworks for Efficient C-S Cross-Coupling.

Chem Asian J

December 2024

IOCB CAS: Ustav organicke chemie a biochemie Akademie ved Ceske republiky, Chemistry, 16000, CZECHIA.

Single-atom-based Metal-Organic Frameworks (MOFs) hold great promising candidates for heterogeneous catalysis, demonstrating outstanding catalytic activity and exceptional product selectivity. This is attributed to their optimal atom utilization, high surface energy, and the presence of unsaturated coordination environments. Here in, we have developed a nickel single-atom catalyst (UiO-66/Ni) featuring Ni single atoms covalently attached to defect-engineered Zr-oxide clusters within the stable UiO-66 framework, synthesized via a straightforward solution impregnation method.

View Article and Find Full Text PDF

Introduction: Lung injury, a common complication of sepsis, arises from elevated reactive oxygen species (ROS), mitochondrial dysfunction, and cell death driven by inflammation. In this study, a novel class of ultrasmall nanoparticles (CuO USNPs) was developed to address sepsis-induced lung injury (SILI).

Methods: The synthesized nanoparticles were thoroughly characterized to assess their properties.

View Article and Find Full Text PDF

Enhancing renal protection against cadmium toxicity: the role of herbal active ingredients.

Toxicol Res (Camb)

December 2024

Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, P. O. Box 91779-48954, Mashhad, Iran.

Background: Rapid industrialization globally has led to a notable increase in the production and utilization of metals, including cadmium (Cd), consequently escalating global metal pollution worldwide. Cd, characterized as a persistent environmental contaminant, poses significant health risks, particularly impacting human health, notably the functionality of the kidneys. The profound effects of Cd stem primarily from its limited excretion capabilities and extended half-life within the human body.

View Article and Find Full Text PDF

The effect of a citrus-derived flavonoid, hesperetin, on the automaticity and contraction of isolated guinea pig myocardium was examined. Hesperetin inhibited the rate of ectopic action potential firing of the pulmonary vein myocardium; the slope of the diastolic depolarization was decreased with minimum change in the action potential waveform. The effect was dependent on the concentration; the EC value for firing rate was 56.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!