Background: Malaria rapid diagnostic tests (RDTs) are precious tools to diagnose malaria. Most RDTs used currently are based on the detection of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) in a patient's blood. However, concern has been raised in recent years that deletion of pfhrp2 in the parasite could affect the accuracy of PfHRP2-based RDTs. In addition, genetic variation in pfhrp2 might influence the accuracy and sensitivity of RDTs. In this study, the genetic variation in pfhrp2 and pfhrp3 in Myanmar P. falciparum isolates was analysed.

Methods: Blood samples were collected from malaria patients who were infected with P. falciparum in Mandalay, Naung Cho, Tha Beik Kyin, and Pyin Oo Lwin, Upper Myanmar between 2013 and 2015. The pfhrp2 and pfhrp3 were amplified by nested polymerase chain reaction (PCR), cloned and sequenced. Genetic variation in Myanmar pfhrp2 and pfhrp3 was analysed using the DNASTAR program. Comparative analysis of Myanmar and global pfhrp2 and pfhrp3 isolates was also performed.

Results: One-hundred and two pfhrp2 and 89 pfhrp3 were amplified from 105 blood samples, of which 84 pfhrp2 and 56 pfhrp3 sequences were obtained successfully. Myanmar pfhrp2 and pfhrp3 showed high levels of genetic variation with different arrangements of distinct repeat types, which further classified Myanmar pfhrp2 and pfhrp3 into 76 and 47 haplotypes, respectively. Novel amino acid changes were also found in Myanmar pfhrp2 and pfhrp3, but their frequencies were very low. Similar structural organization was shared by Myanmar and global pfhrp2 and pfhrp3, and differences in frequencies of repeat types and lengths were also observed between and among global isolates.

Conclusion: Length polymorphisms and amino acid substitutions generated extensive genetic variation in Myanmar pfhrp2 and pfhrp3. Comparative analysis revealed that global pfhrp2 and pfhrp3 share similar structural features, as well as extensive length polymorphisms and distinct organizations of repeat types. These results provide a better understanding of the genetic structure of pfhrp2 and pfhrp3 in global P. falciparum populations and suggest useful information to develop RDTs with improved quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7607715PMC
http://dx.doi.org/10.1186/s12936-020-03456-6DOI Listing

Publication Analysis

Top Keywords

pfhrp2 pfhrp3
52
genetic variation
20
myanmar pfhrp2
20
pfhrp2
16
pfhrp3
13
histidine-rich protein
12
global pfhrp2
12
repeat types
12
myanmar
10
plasmodium falciparum
8

Similar Publications

Very low prevalence of Plasmodium falciparum histidine-rich protein 2 (pfhrp2) gene deletion in the Brazil, Venezuela, and Guyana tri-border.

Sci Rep

January 2025

Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou (IRR), Fundação Oswaldo Cruz (FIOCRUZ), Minas Gerais, Brazil.

Rapid Diagnostic Tests (RDTs) have been an important diagnostic tool for detecting P. falciparum malaria in resource-limited settings. Most tests are designed to detect the Histidine-rich Protein 2 (HRP2).

View Article and Find Full Text PDF

Background: Rapid diagnostic tests (RDTs) based on the detection of Plasmodium falciparum histidine rich protein 2 (PfHRP2) are widely used for the diagnostic of P. falciparum in Africa. However, deletions of the pfhrp2 and pfhrp3 genes can lead to false negative test results and compromise appropriate case management.

View Article and Find Full Text PDF

Malaria rapid diagnostic tests (RDTs) targeting the Plasmodium falciparum histidine-rich protein 2 (PfHRP2) are widely used to diagnose P. falciparum infection. However, reports of P.

View Article and Find Full Text PDF

Rapid diagnostic tests (RDTs) are crucial for diagnosing malaria in resource-limited settings. These tests, which detect the histidine-rich protein 2 (PfHRP2) and its structural homologue PfHRP3, are specifically designed to identify Plasmodium falciparum. Deletion of the Pfhrp2 gene in parasite has been reported in India and other malaria-endemic countries.

View Article and Find Full Text PDF

The spread of molecular markers of artemisinin partial resistance and diagnostic evasion in Eritrea: a retrospective molecular epidemiology study.

Lancet Microbe

December 2024

Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Gallipolli Barracks, Enoggera, QLD, Australia; Australian Defence Force Malaria and Infectious Disease Institute Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. Electronic address:

Background: Eritrea was the first African country to discontinue the use of histidine rich protein 2 (HRP2)-detecting rapid diagnostic tests (RDTs) for malaria diagnosis following reports of a high prevalence of pfhrp2/3-deleted Plasmodium falciparum parasites causing false-negative results in the country. Eritrea was also the first African country to report partial artemisinin resistance due to the P falciparum kelch13 (pfk13) Arg622Ile mutation. We aimed to characterise the spatial distribution of pfk13 mutants and their interactions with pfhrp2/3 deletions in Eritrea and to assess the role of the use of HRP2-detecting RDTs and antimalarial (artesunate-amodiaquine) therapy in the spread of the two variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!