A cavity optomechanical locking scheme based on the optical spring effect.

Rev Sci Instrum

ZOQ (Zentrum für Optische Quantentechnologien), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.

Published: October 2020

We present a novel locking scheme for active length-stabilization and frequency detuning of a cavity optomechanical device based on the optical spring effect. The error signal is generated by utilizing the position measurement of a thermally driven intra-cavity nanomechanical device and employing its detuning-dependent frequency shift caused by the dispersive coupling to the cavity field. The scheme neither requires external modulation of the laser or the cavity nor does it demand for additional error signal readout, rendering its technical implementation rather simple for a large variety of existing optomechanical devices. Specifically, for large-linewidth microcavities or in situations where other locking schemes appear unfavorable conceptually or are hard to realize technically, the optical spring lock represents a potential alternative for stabilizing the cavity length. We explain the functional principle of the lock and characterize its performance in terms of bandwidth and gain profile.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0010255DOI Listing

Publication Analysis

Top Keywords

optical spring
12
cavity optomechanical
8
locking scheme
8
based optical
8
error signal
8
cavity
5
optomechanical locking
4
scheme based
4
spring novel
4
novel locking
4

Similar Publications

Introduction: Lotilaner ophthalmic solution (0.25%) is the first United States Food and Drug Administration (US FDA)-approved drug for treating Demodex blepharitis. In pivotal trials, it was found to be well tolerated and demonstrated a significant reduction in collarettes and mite density after a 6-week treatment regimen.

View Article and Find Full Text PDF

Background: Immersive virtual reality (iVR) has emerged as a training method to prepare medical first responders (MFRs) for mass casualty incidents (MCIs) and disasters in a resource-efficient, flexible, and safe manner. However, systematic evaluations and validations of potential performance indicators for virtual MCI training are still lacking.

Objective: This study aimed to investigate whether different performance indicators based on visual attention, triage performance, and information transmission can be effectively extended to MCI training in iVR by testing if they can discriminate between different levels of expertise.

View Article and Find Full Text PDF

Recent Advances in the Design and Application of Asymmetric Carbon-Based Materials.

Small Methods

January 2025

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China.

Asymmetric carbon-based materials (ACBMs) have received significant attention in scientific research due to their unique structures and properties. Through the introduction of heterogeneous atoms and the construction of asymmetric ordered/disordered structures, ACBMs are optimized in terms of electrical conductivity, pore structure, and chemical composition and exhibit multiple properties such as hydrophilicity, hydrophobicity, optical characteristics, and magnetic behavior. Here, the recent research progress of ACBMs is reviewed, focusing on the potential of these materials for electrochemical, catalysis, and biomedical applications and their unique advantages over conventional symmetric carbon-based materials.

View Article and Find Full Text PDF

Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA.

View Article and Find Full Text PDF

Motivation: The exploration of the 3D organization of DNA within the nucleus in relation to various stages of cellular development has led to experiments generating spatiotemporal Hi-C data. However, there is limited spatiotemporal Hi-C data for many organisms, impeding the study of 3D genome dynamics. To overcome this limitation and advance our understanding of genome organization, it is crucial to develop methods for forecasting Hi-C data at future time points from existing time-series Hi-C data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!