The reflection of audio sounds generated by a parametric array loudspeaker (PAL) is investigated in this paper. The image source method and the non-paraxial PAL radiation model under the quasilinear approximation are used to calculate the reflected audio sound from an infinitely large surface with an arbitrary incident angle. The effects of the surface absorption in the ultrasound frequency range are studied, and the simulation and experiment results show that the reflection behavior of audio sounds generated by a PAL is different from those generated by traditional audio sources. The reason is that the reflected sound generated by the PAL consists of the reflection of audio sounds generated by incident ultrasounds and the audio sounds generated by the reflected ultrasound, and it is the latter that determines the directivity of the reflected audio sound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0002161 | DOI Listing |
Sci Rep
January 2025
Department of Signal Theory and Communications, Universidad de Valladolid, 47002, Valladolid, Spain.
Sound-based uroflowmetry (SU) offers a non-invasive alternative to traditional uroflowmetry (UF) for evaluating lower urinary tract dysfunctions, enabling home-based testing and reducing the need for clinic visits. This study compares SU and UF in estimating urine flow rate and voided volume in 50 male volunteers (aged 18-60), with UF results from a Minze uroflowmeter as the reference standard. Audio signals recorded during voiding were segmented and machine learning algorithms (gradient boosting, random forest, and support vector machine) estimated flow parameters from three devices: Ultramic384k, Mi A1 smartphone, and Oppo smartwatch.
View Article and Find Full Text PDFeNeuro
January 2025
Neurophysiology of Everyday Life Group, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
A comprehensive analysis of everyday sound perception can be achieved using Electroencephalography (EEG) with the concurrent acquisition of information about the environment. While extensive research has been dedicated to speech perception, the complexities of auditory perception within everyday environments, specifically the types of information and the key features to extract, remain less explored. Our study aims to systematically investigate the relevance of different feature categories: discrete sound-identity markers, general cognitive state information, and acoustic representations, including discrete sound onset, the envelope, and mel-spectrogram.
View Article and Find Full Text PDFConf Proc (IEEE Colomb Conf Commun Comput)
August 2024
School of Electronic and Electrical Engineering, Sungkyunkwan University, South Korea.
A new pneumonia detection method is proposed to provide both pneumonia detection in respiratory sound signals and wheeze and crackle discrimination when pneumonia episodes are detected. In the proposed method, two-step hierarchy, classifying pneumonia in the first step and discriminating wheezing and crackling in the second step, is considered; the conventional pneumonia detection method is modified to improve pneumonia detection performance, while wheezing and crackling discrimination functionality is added to facilitate the application of appropriate remedies for each case. We used resampling techniques to address the imbalance in the ICBHI pneumonia dataset.
View Article and Find Full Text PDFComput Biol Med
December 2024
École de technologie supérieure, 1100 Notre-Dame St W, Montreal, H3C 1K3, Quebec, Canada; Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT), 527 Rue Sherbrooke O #8, Montréal, QC H3A 1E3, Canada. Electronic address:
Background: Although stress plays a key role in tinnitus and decreased sound tolerance, conventional hearing devices used to manage these conditions are not currently capable of monitoring the wearer's stress level. The aim of this study was to assess the feasibility of stress monitoring with an in-ear device.
Method: In-ear heartbeat sounds and clinical-grade electrocardiography (ECG) signals were simultaneously recorded while 30 healthy young adults underwent a stress protocol.
PLoS One
December 2024
Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, China.
Bowel sounds, a reflection of the gastrointestinal tract's peristalsis, are essential for diagnosing and monitoring gastrointestinal conditions. However, the absence of an effective, non-invasive method for assessing digestion through auscultation has resulted in a reliance on time-consuming and laborious manual analysis by clinicians. This study introduces an innovative deep learning-based method designed to automate and enhance the recognition of bowel sounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!