A Fourier transform formulation for radiation from an unbaffled cylinder.

J Acoust Soc Am

United States Naval Research Laboratory, Code 7106, Washington, DC 20375, USA.

Published: October 2020

A formulation based on the Fourier transform and generalized functions, and implemented with a fast Fourier transform, is developed to solve a classic acoustics problem: radiation from an unbaffled cylinder with flat endcaps. The endcaps as well as the cylindrical surface have a specified modal vibration pattern, and the problem is solved using the sum of two independent formulations based on the Fourier transform: (1) a vibrating cylinder with rigid endcaps and (2) a rigid cylindrical tube with vibrating diaphragms at its ends. The resulting nearfield solution correctly models the diffraction effects generated at the sharp ends of the cylinder. Calculation of the farfield radiated pressure follows directly from the nearfield solutions with a slight modification to the standard formulas. Results from the formulations are validated with a boundary element simulation and show excellent agreement with errors of less than 1%.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0002258DOI Listing

Publication Analysis

Top Keywords

fourier transform
16
radiation unbaffled
8
unbaffled cylinder
8
based fourier
8
fourier
4
transform formulation
4
formulation radiation
4
cylinder
4
cylinder formulation
4
formulation based
4

Similar Publications

The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility.

View Article and Find Full Text PDF

This study explores the effect of different extraction methods and preheat treatments in obtaining protein concentrate from pumpkin seed flour. The effects on the yield and functional properties of pumpkin seed protein concentrate (PSPC) were compared alongside microwave and conventional preheating methods using alkali, salt, and enzyme-assisted alkali extraction techniques. Analytical assessments included proximate analysis, soluble protein content, water solubility index (WSI), emulsification activity (EA) and stability (ES), foaming capacity (FC) and stability (FS), and antioxidant activity (AA).

View Article and Find Full Text PDF

Adsorption isotherms in roasted specialty coffee ( L.): Dataset and statistical tools for optimizing storage conditions and enhancing shelf life.

Data Brief

February 2025

Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Departamento de Ingeniería Agrícola, Universidad Surcolombiana, Neiva-Huila 410001, Colombia.

This work presents a comprehensive dataset of adsorption isotherms and infrared spectral data for roasted specialty coffee ( L.). The dataset includes adsorption isotherms for whole roasted beans and ground coffee at medium (850 µm) and fine (600 µm) particle sizes.

View Article and Find Full Text PDF

Mid-infrared spectra of dried and roasted cocoa ( L.): A dataset for machine learning-based classification of cocoa varieties and prediction of theobromine and caffeine content.

Data Brief

February 2025

Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Departamento de Ingeniería Agrícola, Universidad Surcolombiana, Neiva-Huila 410001, Colombia.

This paper presents a comprehensive dataset of mid-infrared spectra for dried and roasted cocoa beans ( L.), along with their corresponding theobromine and caffeine content. Infrared data were acquired using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy, while High-Performance Liquid Chromatography (HPLC) was employed to accurately quantify theobromine and caffeine in the dried cocoa beans.

View Article and Find Full Text PDF

This study evaluated the effects of chemical modification, including ethanol, acetic acid, and natural deep eutectic solvents (NADES), on the secondary and tertiary structures, hydrophobicity, free amine content, protein-protein interactions, and functional properties of zein. The NADES used included choline chloride: oxalic acid, choline chloride: urea, choline chloride: glycerol, and glucose: citric acid. The results reveal that the NADES system significantly altered zein's structures, as evidenced by Fourier transform infrared spectroscopy, fluorescence, and Ultraviolet-Visible Spectroscopy analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!