The path toward the synchronization of an ensemble of dynamical units goes through a series of transitions determined by the dynamics and the structure of the connections network. In some systems on the verge of complete synchronization, intermittent synchronization, a time-dependent state where full synchronization alternates with non-synchronized periods, has been observed. This phenomenon has been recently considered to have functional relevance in neuronal ensembles and other networked biological systems close to criticality. We characterize the intermittent state as a function of the network topology to show that the different structures can encourage or inhibit the appearance of early signs of intermittency. In particular, we study the local intermittency and show how the nodes incorporate to intermittency in hierarchical order, which can provide information about the node topological role even when the structure is unknown.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0020419 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!