Isotope enrichment in neon clusters grown in helium nanodroplets.

J Chem Phys

Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, A-6020 Innsbruck, Austria.

Published: October 2020

Neon cluster ions Ne grown in pre-ionized, mass-to-charge selected helium nanodroplets (HNDs) reveal a strong enrichment of the heavy isotope Ne that depends on cluster size s and the experimental conditions. For small sizes, the enrichment is much larger than previously reported for bare neon clusters grown in nozzle expansions and subsequently ionized. The enrichment is traced to the massive evaporation of neon atoms in a collision cell that is used to strip helium from the HNDs. We derive a relation between the enrichment of Ne in the cluster ion and its corresponding depletion factor F in the vapor phase. The value thus found for F is in excellent agreement with a theoretical expression that relates isotopic fractionation in two-phase equilibria of atomic gases to the Debye temperature. Furthermore, the difference in zero-point energies between the two isotopes computed from F agrees reasonably well with theoretical studies of neon cluster ions that include nuclear quantum effects in the harmonic approximation. Another fitting parameter provides an estimate for the size s of the precursor of the observed Ne . The value is in satisfactory agreement with the size estimated by modeling the growth of Ne and with lower and upper limits deduced from other experimental data. On the other hand, neon clusters grown in neutral HNDs that are subsequently ionized by electron bombardment exhibit no statistically significant isotope enrichment at all. The finding suggests that the extent of ionization-induced dissociation of clusters embedded in HNDs is considerably smaller than that for bare clusters.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0028056DOI Listing

Publication Analysis

Top Keywords

neon clusters
12
clusters grown
12
isotope enrichment
8
helium nanodroplets
8
neon cluster
8
cluster ions
8
subsequently ionized
8
neon
6
clusters
5
enrichment
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!