Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A combined approach based on quantum-chemical calculations and molecular beam experiments demonstrates that in isolated nanoalloy clusters of type GdSn, a total number of N = 19 tin atoms can be arranged around a central gadolinium atom. While the formation of the first coordination shell is incomplete for clusters with less than 15 tin atoms, the second coordination sphere starts to form for cluster sizes of more than 20 tin atoms. The magnetic properties of the clusters reveal that the tin atoms not only provide a hollow cage for Gd but also are chemically bound to the central atom. The calculated spin densities imply that an electron transfer from Gd to the tin cage takes place, which is similar to what is observed for endohedral metallofullerenes. However, the measured electric dipole moments indicate that in contrast to metallofullerenes, the Gd atom is located close to the center of the tin cage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0027772 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!